powered by
Performs a kernel PCA.
kernel.pca(K, ncomp = nrow(K$kernel))
kernel.pca returns an object of classes "kernel.pca"
kernel.pca
"kernel.pca"
and "pca", which is a list containing the following entries:
"pca"
: the number of principal components;
: the input kernel matrix;
: the input kernel object provided by the user;
: the singular values (square root of the eigenvalues);
: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors);
: same as 'rotation' to keep the mixOmics spirit;
a kernel object obtained using either compute.kernel or combine.kernels.
compute.kernel
combine.kernels
integer. Indicates the number of components to return..
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
Scholkopf B., Smola A. and Muller K.R. (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
compute.kernel, combine.kernels
data(TARAoceans) phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear") kernel.pca.result <- kernel.pca(phychem.kernel, ncomp = 3)
Run the code above in your browser using DataLab