mlr3 (version 0.1.0-9000)

ResamplingRepeatedCV: Repeated Cross Validation Resampling

Description

repeats (default: 10) times repeated folds-fold (default: 10) cross-validation.

The iteration counter translates to repeats blocks of folds cross-validations, i.e., the first folds iterations belong to a single cross-validation.

Usage

ResamplingRepeatedCV

Arguments

Format

R6::R6Class() inheriting from Resampling.

Fields

See Resampling.

Methods

See Resampling. Additionally, the class provides two helper function to translate iteration numbers to folds / repeats:

  • folds(iters) integer() -> integer() Translates iteration numbers to fold number.

  • repeats(iters) integer() -> integer() Translates iteration numbers to repetition number.

Examples

Run this code
# NOT RUN {
# Create a task with 10 observations
task = mlr_tasks$get("iris")
task$filter(1:10)

# Instantiate Resampling
rrcv = mlr_resamplings$get("repeated_cv")
rrcv$param_set$values = list(repeats = 2, folds = 3)
rrcv$instantiate(task)
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

# Internal storage:
rrcv$instance # table
# }

Run the code above in your browser using DataLab