Splits data into bootstrap samples (sampling with replacement).
Hyperparameters are the number of bootstrap iterations (repeats
, default: 30)
and the ratio of observations to draw per iteration (ratio
, default: 1) for the training set.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("bootstrap") rsmp("bootstrap")
repeats
(integer(1)
)
Number of repetitions.
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingBootstrap
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingBootstrap$new()
clone()
The objects of this class are cloneable with this method.
ResamplingBootstrap$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3bischl_2012
Dictionary of Resamplings: mlr_resamplings
as.data.table(mlr_resamplings)
for a complete table of all (also dynamically created) Resampling implementations.
Other Resampling:
Resampling
,
mlr_resamplings_custom
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
,
mlr_resamplings
# NOT RUN {
# Create a task with 10 observations
task = tsk("iris")
task$filter(1:10)
# Instantiate Resampling
rb = rsmp("bootstrap", repeats = 2, ratio = 1)
rb$instantiate(task)
# Individual sets:
rb$train_set(1)
rb$test_set(1)
intersect(rb$train_set(1), rb$test_set(1))
# Internal storage:
rb$instance$M # Matrix of counts
# }
Run the code above in your browser using DataLab