pmforest

0th

Percentile

Compute model-based forest from model.

Input a parametric model and get a forest.

Usage
pmforest(model, data = NULL, zformula = ~., ntree = 500L,
  perturb = list(replace = FALSE, fraction = 0.632), mtry = NULL,
  applyfun = NULL, cores = NULL, control = ctree_control(teststat =
  "quad", testtype = "Univ", mincriterion = 0, saveinfo = FALSE, lookahead
  = TRUE, ...), trace = FALSE, ...)

# S3 method for pmforest gettree(object, tree = 1L, saveinfo = TRUE, coeffun = coef, ...)

Arguments
model

a model object. The model can be a parametric model with a single binary covariate.

data

data. If NULL the data from the model object are used.

zformula

formula describing which variable should be used for partitioning. Default is to use all variables in data that are not in the model (i.e. ~ .).

ntree

number of trees.

perturb

a list with arguments replace and fraction determining which type of resampling with replace = TRUE referring to the n-out-of-n bootstrap and replace = FALSE to sample splitting. fraction is the number of observations to draw without replacement.

mtry

number of input variables randomly sampled as candidates at each node (Default NULL corresponds to ceiling(sqrt(nvar))). Bagging, as special case of a random forest without random input variable sampling, can be performed by setting mtry either equal to Inf or equal to the number of input variables.

applyfun

see cforest.

cores

see cforest.

control

control parameters, see ctree_control.

trace

a logical indicating if a progress bar shall be printed while the forest grows.

...

additional parameters passed on to model fit such as weights.

object

an object returned by pmforest.

tree

an integer, the number of the tree to extract from the forest.

saveinfo

logical. Should the model info be stored in terminal nodes?

coeffun

function that takes the model object and returns the coefficients. Useful when coef() does not return all coefficients (e.g. survreg).

Value

cforest object

See Also

gettree

Aliases
  • pmforest
  • gettree.pmforest
Examples
# NOT RUN {
library("model4you")

if(require("mvtnorm") & require("survival")) {
  
  ## function to simulate the data
  sim_data <- function(n = 500, p = 10, beta = 3, sd = 1){
    
    ## treatment
    lev <- c("C", "A")
    a <- rep(factor(lev, labels = lev, levels = lev), length = n)
    
    ## correlated z variables
    sigma <- diag(p) 
    sigma[sigma == 0] <- 0.2
    ztemp <- rmvnorm(n, sigma = sigma)
    z <- (pnorm(ztemp) * 2 * pi) - pi  
    colnames(z) <- paste0("z", 1:ncol(z))
    z1 <- z[,1]
    
    ## outcome
    y <- 7 + 0.2 * (a %in% "A") + beta * cos(z1) * (a %in% "A") + rnorm(n, 0, sd)
    
    data.frame(y = y, a = a, z)
  }
  
  ## simulate data
  set.seed(123)
  beta <- 3
  ntrain <- 500
  ntest <- 50
  simdata <- simdata_s <- sim_data(p = 5, beta = beta, n = ntrain)
  tsimdata <- tsimdata_s <- sim_data(p = 5, beta = beta, n = ntest)
  simdata_s$cens <- rep(1, ntrain)
  tsimdata_s$cens <- rep(1, ntest)
  
  ## base model
  basemodel_lm <- lm(y ~ a, data = simdata)
  
  ## forest
  frst_lm <- pmforest(basemodel_lm, ntree = 20, 
                      perturb = list(replace = FALSE, fraction = 0.632),
                      control = ctree_control(mincriterion = 0))
  
  ## personalised models
  # (1) return the model objects
  pmodels_lm <- pmodel(x = frst_lm, newdata = tsimdata, fun = identity)
  class(pmodels_lm)
  # (2) return coefficients only (default)
  coefs_lm <- pmodel(x = frst_lm, newdata = tsimdata)
  
  # compare predictive objective functions of personalised models versus
  # base model
  sum(objfun(pmodels_lm)) # -RSS personalised models
  sum(objfun(basemodel_lm, newdata = tsimdata)) # -RSS base model
  
  
  if(require("ggplot2")) {
    ## dependence plot
    dp_lm <- cbind(coefs_lm, tsimdata)
    ggplot(tsimdata) +
      stat_function(fun = function(z1) 0.2 + beta * cos(z1), 
                    aes(color = "true treatment\neffect")) +
      geom_point(data = dp_lm, 
                 aes(y = aA, x = z1, color = "estimates lm"), 
                 alpha = 0.5)  +
      ylab("treatment effect") + 
      xlab("patient characteristic z1")
  }
}

# }
Documentation reproduced from package model4you, version 0.9-5, License: GPL-2 | GPL-3

Community examples

Looks like there are no examples yet.