## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3 -- try adding
## verb=3 argument for a step-by-step breakdown
data(cement.miss)
out <- bmonomvn(cement.miss)
out
out$mu
out$S
##
## A bigger example, comparing the various methods
##
## generate N=1000 samples from a random MVN
xmuS <- randmvn(1000, 100)
## randomly impose monotone missingness
xmiss <- rmono(xmuS$x, m=110)
## using least squares only when necessary
out.b <- bmonomvn(xmiss)
out.b
kl.norm(out.b$mu, out.b$S, xmuS$mu, xmuS$S)
out.mle <- monomvn(xmiss)
kl.norm(out.mle$mu, out.mle$S, xmuS$mu, xmuS$S)
## using least squares sparingly
out.b.s <- bmonomvn(xmiss, p=0.25)
kl.norm(out.b.s$mu, out.b.s$S, xmuS$mu, xmuS$S)
out.mle.s <- monomvn(xmiss, p=0.25)
kl.norm(out.mle.s$mu, out.mle.s$S, xmuS$mu, xmuS$S)
Run the code above in your browser using DataLab