morseTKTD
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of Survival TKTD models (like the Generalized Unified Threshold model of Survival (GUTS)).
Submission
Before a submission, you can look at prepare-for-cran , which is an open and collaborative list of things you have to check before submitting your package to the CRAN.
Otherwise, check "as-cran"" using the source package:
library(devtools)
# create documentation
devtools::document(roclets = c('rd', 'collate', 'namespace'))
Once the archive is done, check that .Rbuildignore was applied. Try to have a low size archive (< 2Mb)
Either directly
# build and check the archive
devtools::check()
Or in 2 steps:
# 1. build the package.
devtools::build()
# 2. check the archive.
devtools::check_built("../morseTKTD_0.1.0.tar.gz")
See the CRAN status of your sumbmission:
- incoming R CRAN packages: Index of /incoming
- incoming dashboard: incoming dashboard
Install from gitlab repository
library('remotes')
remotes::install_gitlab("mosaic-software/morsetktd", host = "gitlab.in2p3.fr")
Build the manual and vignettes
library('devtools')
devtools::document(roclets = c('rd', 'collate', 'namespace'))
devtools::build_manual()
devtools::build_vignettes()
building the package
Note add to .buildignore
# remove files .rds in fixtures
rds_files <- list.files(path = "tests/testthat/fixtures", pattern = "\.rds$", full.names = TRUE)
use_build_ignore(rds_files, escape = TRUE)
library(devtools)
devtools::build()
Add dependencies
usethis::use_package("ggplot2")
Coverage
From R session
library(covr)
cov <- package_coverage("morseTKTD")
Style of process
The succession of steps
data
: load the data set.BinaryData
,CountData
orContinuousData
: make aModelData
object for binary, count and quantitative continuous data, respectively.- The above-mentioned objects inherit of
data.frame
plot
: plot aModelData
object.summary
: provides a summary of aModelData
object.doseResponse
: return aDoseResponse
object.plot
: plot aDoseResponse
object.fit
: fit aModelData
object and return aFit
object.plot
: plot aFit
object.ppc
: return aPPC
object.plot
: plot aPPC
object.
Coding Style
Object: BigCamelCase
class(x) <- append("ObjectCamelCase", class(x))
Methods: small_snake_case
methods_snake_case <- function(object, ...){
UseMethod("methods_snake_case")
}
methods_snake_case.ObjectCamelCase <- function(...){}
Function (no methods - not linked to object): smallCamelCase
smallCamelCase <- function(...){}