SurvFit objectsThis is the generic predict S3 method for the SurvFit class.
It provides predicted survival rate for "SD" or "IT" models under constant or time-variable exposure.
prediction on constant exposure profile
Note: On constant exposure profiles, the results is explicit (exact), so you don't have to profile
predict_SurvFitCstExp(
fit,
display.exposure = NULL,
hb_value = NULL,
interpolate_length = NULL,
...
)predict_cstSD(
display.exposure = NULL,
display.parameters = NULL,
hb_value = NULL,
interpolate_length = NULL
)
predict_cstIT(
display.exposure = NULL,
display.parameters = NULL,
hb_value = NULL,
interpolate_length = NULL
)
predict_SurvFitVarExp(
fit,
display.exposure = NULL,
hb_value = NULL,
interpolate_length = NULL,
interpolate_method = "linear",
...
)
predict_varSD(
display.exposure = NULL,
display.parameters = NULL,
hb_value = NULL,
interpolate_length = NULL,
interpolate_method = NULL
)
predict_varIT(
display.exposure = NULL,
display.parameters = NULL,
hb_value = NULL,
interpolate_length = NULL,
interpolate_method = NULL
)
predict(fit, ...)
# S3 method for SurvFit
predict(
fit,
display.exposure = NULL,
hb_value = NULL,
interpolate_length = NULL,
interpolate_method = "linear",
...
)
a list of data.frame with the quantiles of outputs in
df_quantiles or all the MCMC chains df_spaghetti
an object of class SurvFit
concentration points on which prediction is done
a numeric used as hb_value (can be set to 0 to remove
background mortality and take only effect parameters).
if display.time is NULL, the argument
interpolate_length can be used to provide a sequence from 0 to maximum of
the time of exposure in original dataset (used for fitting).
Further arguments to be passed to generic methods
parameters of the specific model.
The interpolation method for concentration.
See package deSolve for details.
Default is linear.