F.cjs.gof( cjsobj, resid.type="pearson", rule.of.thumb = 2, HL.breaks = "deciles" )F.cjs.estimresid.type = 'pearson' produces
Pearson residuals. resid.type = 'deviance' produces deviance residuals.
Anything other than 'deviance' gives you Pearson residuals.rule.of.thumb = 2, the expected count in a cell has to be greater than
2 in order for the cell to be included in the overall Chi-square statistic fort4.table by
summing the chi-square contributions over cells that meet the rule.of.thumb.rule.of.thumb
minus 1.t5.table by
summing the chi-square contributions over cells that meet the rule.of.thumb.rule.of.thumb
minus 1.F.cjs.estim, print.cjsdata(dipper.histories)
xy <- F.cjs.covars( nrow(dipper.histories), ncol(dipper.histories) )
for(j in 1:ncol(dipper.histories)){ assign(paste("x",j,sep=""), xy$x[,,j]) }
dipper.cjs <- F.cjs.estim( ~x2+x3+x4+x5+x6, ~x1+x2+x3+x4+x5, dipper.histories )
dipper.cjs.gof <- F.cjs.gof( dipper.cjs )
print(dipper.cjs.gof)Run the code above in your browser using DataLab