Learn R Programming

⚠️There's a newer version (2.16.11) of this package.Take me there.

mra (version 2.1)

Analysis of Mark-Recapture data

Description

Analysis of mark-recapture (capture-recapture) data using individual, time, and individual-time varying covariates. Version 1.X contains functions to estimate live-capture Cormack-Jolly-Seber open population models.

Copy Link

Version

Install

install.packages('mra')

Monthly Downloads

101

Version

2.1

License

GNU General Public License

Maintainer

Trent McDonald

Last Published

April 11th, 2018

Functions in mra (2.1)

F.sat.lik

F.sat.lik
print.cjs

Print Cormack-Jolly-Seber (CJS) Models
print.nhat

print.nhat
residuals.cjs

Residuals for CJS Model
F.cjs.gof

F.cjs.gof
F.huggins.estim

F.huggins.estim - Estimation of Huggins closed population capture-recapture model.
F.3d.model.matrix

3-Dimensional capture-recapture model matrices
F.fit.table

F.fit.table - Produce a summary table of model fit statistics.
mra-package

MRA - Mark Recapture Analysis
F.step.cjs

F.step.cjs - Stepwise model selection for CJS models.
plot.cjs

Plot CJS Model
F.cr.model.matrix

Capture-Recapture model matrix
dipper.data

European Dipper data
F.cjs.covars

F.cjs.covars
mra.control

mra.control - Control over MRA fitting process
lines.cjs

lines.cjs
F.cr.model.avg

F.cr.model.avg - Model averaging of mark-recapture parameters.
ivar

Expand Individual-varying covariates in models
F.cjs.simulate

F.cjs.simulate - Generation of capture histories that follow a CJS model.
F.cjs.estim

F.cjs.estim - Cormack-Jolly-Seber estimation
F.update.df

F.update.df - Update degrees of freedom in a Cormack-Jolly-Seber fitted object
predict.cjs

predict.cjs
tvar

Expand Time-varying covariates in models
print.hug

Print Huggin's Model objects
plot.nhat

Plot size estimates