Learn R Programming

mra (version 2.1)

mra-package: MRA - Mark Recapture Analysis

Description

Description - This package contains analysis functions, and associated routines, to conduct analyses of mark-recapture (capture-recapture) data using individual, time, and individual-time varying covariates. In general, these routines relate vectors of capture histories to vectors of covariates using a regression approach (Amstrup et al. 2005, Ch 9). All capture, survival, transition, etc. parameters are functions of individual and time specific covariates, and the estimated parameters are coefficients in logistic-linear equations. Relationship to MARK - For the most part, these routines perform a subset of the analyses available in program MARK or via the MARK front-end package, RMark. However, there are differences. The most significant difference between this package and MARK is parameterization. The parameterization used here does not utilize triangular "parameter information matrices" (PIMs) as MARK (and RMark) does. Because of this, the "design" matrix utilized by this package is not parallel to the "design" matrix of program MARK. For those new to mark-recapture analysis, this parameterization difference will be inconsequential. The approach taken here provides equivalent modeling flexibility, yet is easier to grasp and visualize, in our opinion. For those already familiar with the PIMs used by program MARK, it is helpful to view the "PIMs" of this package as rectangular matrices of the real parameters. I.e., the "PIMs" of this package are rectangular matrices where cell (i,j) is the real parameter (capture or survival) for individual i at capture occasion j. Currently, analyses available here that are not included in program MARK include:
  • Estimation of population size from open population CJS models via the Horvitz-Thompson estimator.
  • Residuals, goodness of fit tests, and associated plots for assessing model fit in open CJS models.
History - These routines grew out of consulting work on mark recapture projects. The original Fortran code, upon which the package is based, was written by Dr. Bryan Manly for a northern spotted owl similation project in 1991. Dr. Manly is the one who originally envisioned and programed the non-PIM (or rectangular PIM, if you prefer) approach. However, Dr. Manly did not realize what he had done. In 1997, Dr. Trent McDonald did an almost complete revision of the original Fortran routines for use on a polar bear mark-recapture project. At that time, the routines were stand-alone Fortran executables. Subsequent revisions required by other projects included addition of closed-form variance estimates (originally, variances were estimated by the bootstrap), the Horvitz-Thompson size estimates, and goodness of fit testing. In 2003, it finally dawned on Dr. McDonald how to call a Fortran DLL from S-Plus and R, thus eliminating the executable version and allowing S-Plus or R to do front-end data manipulation and plotting. S-Plus was abandoned in favor of R in 2004. After publication of Amstrup et al. (2005), Dr. McDonald realized that an official R package with documentation was needed, and learned how to make a package (not an easy process for him). Throughout the process, several statisticians, including Dr. Manly, Dr. Jeff Laake and Dr. Gary White, have provided comments that helped shape the approach.

Arguments

Details

ll{ Package: mra Type: Package License: GNU General Public License } List of routines: F.cjs.covars Returns matricies that can be used to fit a CJS model F.cjs.estim Estimation of Cormack-Jolly-Seber (CJS) open population model F.cjs.gof Goodness-of-fit tests for CJS models F.cr.model.matrix A function called by other routines that returns a 3-D design matrix. F.huggins.estim Estimation of Huggin's closed population model F.sat.lik Returns the saturated likelihood for a CJS model that does not contain individual covariates dipper.data European Dipper data set lines.cjs Lines method for cjs objects plot.cjs Plot method for cjs objects predict.cjs Predicted values for active cells of a CJS model. print.cjs Print method for cjs objects print.nhat Pring method for size estimates from a CJS model residuals.cjs Residuals for CJS models

References

Amstrup, S.C., T.L. McDonald, and B.F.J. Manly. 2005. Handbook of Capture-Recapture Analysis, Princeton: Princeton University Press.