Learn R Programming

⚠️There's a newer version (3.1.2) of this package.Take me there.

msaenet

msaenet implements the multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) <DOI:10.1080/00949655.2015.1016944> (PDF).

Multi-step adaptive estimation based on MCP-net or SCAD-net is also supported.

Paper Citation

Formatted citation:

Nan Xiao and Qing-Song Xu. (2015). Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection. Journal of Statistical Computation and Simulation 85(18), 3755-3765.

BibTeX entry:

@article{xiao2015msaenet,
  title={Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection},
  author={Xiao, Nan and Xu, Qing-Song},
  journal={Journal of Statistical Computation and Simulation},
  volume={85},
  number={18},
  pages={3755--3765},
  year={2015},
  publisher={Taylor \& Francis}
}

Gallery

Adaptive Elastic-Net / Multi-Step Adaptive Elastic-Net

Adaptive MCP-Net / Multi-Step Adaptive MCP-Net

Adaptive SCAD-Net / Multi-Step Adaptive SCAD-Net

Installation

To download and install msaenet from CRAN:

install.packages("msaenet")

Or try the development version on GitHub:

# install.packages("devtools")
devtools::install_github("road2stat/msaenet")

Browse the package vignette (can be opened with vignette("msaenet") in R) for a quick-start.

Visit the website for more documentation.

Copy Link

Version

Install

install.packages('msaenet')

Monthly Downloads

602

Version

2.1

License

GPL-3 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Nan Xiao

Last Published

January 16th, 2017

Functions in msaenet (2.1)

msaenet.fp

Get the Number of False Positive Selections
msaenet

Multi-Step Adaptive Elastic-Net
msaenet.mse

Mean Squared Error (MSE)
asnet

Adaptive SCAD-Net
amnet

Adaptive MCP-Net
aenet

Adaptive Elastic-Net
msaenet-package

Multi-Step Adaptive Estimation Methods for Sparse Regressions
msaenet.fn

Get the Number of False Negative Selections
coef.msaenet

Extract Model Coefficients
msaenet.mae

Mean Absolute Error (MAE)
msaenet.tp

Get the Number of True Positive Selections
msaenet.tune.glmnet

Automatic parameter tuning for glmnet by k-fold cross-validation
msaenet.nzv

Get Indices of Non-Zero Variables
msaenet.nzv.all

Get Indices of Non-Zero Variables in All Steps
msaenet.rmsle

Root Mean Squared Logarithmic Error (RMSLE)
msaenet.rmse

Root Mean Squared Error (RMSE)
msaenet.sim.gaussian

Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)
msaenet.sim.poisson

Generate Simulation Data for Benchmarking Sparse Regressions (Poisson Response)
msaenet.sim.cox

Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)
msaenet.sim.binomial

Generate Simulation Data for Benchmarking Sparse Regressions (Binomial Response)
predict.msaenet

Make Predictions from an msaenet Model
print.msaenet

Print msaenet Model Information
msasnet

Multi-Step Adaptive SCAD-Net
msamnet

Multi-Step Adaptive MCP-Net
plot.msaenet

Plot msaenet Model Objects
msaenet.tune.ncvreg

Automatic parameter tuning for ncvreg by k-fold cross-validation