Learn R Programming

msaenet (version 2.1)

msaenet.sim.cox: Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)

Description

Generate simulation data for benchmarking sparse Cox regression models.

Usage

msaenet.sim.cox(n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001)

Arguments

n
Number of observations.
p
Number of variables.
rho
Correlation base for generating correlated variables.
coef
Vector of non-zero coefficients.
snr
Signal-to-noise ratio (SNR).
p.train
Percentage of training set.
seed
Random seed for reproducibility.

Value

List of x.tr, x.te, y.tr, and y.te.

References

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5), 1--13.

Examples

Run this code
dat = msaenet.sim.cox(n = 300, p = 500, rho = 0.6,
                      coef = rep(1, 10), snr = 3, p.train = 0.7,
                      seed = 1001)
dim(dat$x.tr)
dim(dat$x.te)
dim(dat$y.tr)
dim(dat$y.te)

Run the code above in your browser using DataLab