# Single omic analysis:
data("synthetic_metadata")
data("synthetic_rnaseqData")
deggs_object <- get_diffNetworks(assayData = synthetic_rnaseqData,
metadata = synthetic_metadata,
category_variable = "response",
regression_method = "lm",
padj_method = "bonferroni",
verbose = FALSE,
show_progressBar = FALSE,
cores = 1)
# multi-omic analysis:
data("synthetic_metadata")
data("synthetic_rnaseqData")
data("synthetic_proteomicData")
data("synthetic_OlinkData")
assayData_list <- list("RNAseq" = synthetic_rnaseqData,
"Proteomics" = synthetic_proteomicData,
"Olink" = synthetic_OlinkData)
deggs_object <- get_diffNetworks(assayData = assayData_list,
metadata = synthetic_metadata,
category_variable = "response",
regression_method = "lm",
padj_method = "bonferroni",
verbose = FALSE,
show_progressBar = FALSE,
cores = 1)
# to use only certain categories for comparison:
# let's randomly add another level of response to the example metadata
synthetic_metadata$response <- as.character(synthetic_metadata$response)
indices <- sample(1:nrow(synthetic_metadata), 20, replace = FALSE)
synthetic_metadata$response[indices] <- "Moderate response"
deggs_object <- get_diffNetworks(assayData = assayData_list,
metadata = synthetic_metadata,
category_variable = "response",
category_subset = c("Responder",
"Non_responder"),
regression_method = "lm",
verbose = FALSE,
show_progressBar = FALSE,
cores = 1)
# to be more generous on the targets to be excluded, and lower the expression
# level threshold to the 25th percentile (or lower):
deggs_object <- get_diffNetworks(assayData = assayData_list,
metadata = synthetic_metadata,
category_variable = "response",
category_subset = c("Responder",
"Non_responder"),
regression_method = "lm",
percentile_vector = seq(0.25, 0.98, by = 0.05),
verbose = FALSE,
show_progressBar = FALSE,
cores = 1)
Run the code above in your browser using DataLab