Learn R Programming

multiDEGGs

Differentially Expressed Gene-Gene pairs in multi omic data


multiDEGGs

The multiDEGGs package test for differential gene-gene correlations across different groups of samples in multi omic data.
Specific gene-gene interactions can be explored and gene-gene pair regression plots can be interactively shown.

Installation

Install from CRAN:
install.packages("multiDEGGs")

Install from Github:
devtools::install_github("elisabettasciacca/multiDEGGs")

Example

Load package and sample data

library(multiDEGGs)  
data("synthetic_metadata")  
data("synthetic_rnaseqData")  
data("synthetic_proteomicData")
data("synthetic_OlinkData")   

Generate differential networks:

assayData_list <- list("RNAseq" = synthetic_rnaseqData,
                       "Proteomics" = synthetic_proteomicData,
                       "Olink" = synthetic_OlinkData)

deggs_object <- get_diffNetworks(assayData = assayData_list,
                                 metadata = synthetic_metadata,
                                 category_variable = "response",
                                 regression_method = "lm",
                                 padj_method = "bonferroni",
                                 verbose = FALSE,
                                 show_progressBar = FALSE,
                                 cores = 2)

Visualise interactively (will open a shiny interface)

View_diffNetworks(deggs_object)

Get a table listing all the significant interactions found in each category

get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05)

Plot differential regression fits for a single interaction
plot_regressions(deggs_object, assayDataName = "RNAseq", gene_A = "MTOR", gene_B = "AKT2", legend_position = "bottomright")

Citation

citation("multiDEGGs")

Copy Link

Version

Install

install.packages('multiDEGGs')

Monthly Downloads

259

Version

1.1.2

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Elisabetta Sciacca

Last Published

January 16th, 2026

Functions in multiDEGGs (1.1.2)

my_palette

Internal function for colors
predict.multiDEGGs_filter

Wrapper of .predict_multiDEGGs for multiDEGGs_filter()
plot_regressions

Plot differential regressions for a link
node_boxplot

Boxplots of single nodes (genes,proteins, etc.)
tidy_metadata

Tidying up of metadata. Samples belonging to undesidered categories (if specified) will be removed as well as categories with less than five samples, and NAs.
synthetic_metadata

Synthetic clinical data
predict.multiDEGGs_filter_combined

Wrapper of .predict_multiDEGGs for multiDEGGs_filter_combined()
get_sig_deggs

Get a table of all the significant interactions across categories
multiDEGGs_combined_filter

Combined multiDEGGs filter
calc_pvalues_percentile

Compute interaction p values for a single percentile value
.predict_multiDEGGs

Predict method for multiDEGGs_filter objects
get_diffNetworks

Generate multi-omic differential networks
cat_parallel

cat_parallel (from nestedcv)
get_multiOmics_diffNetworks

Get a table of all significant interactions across categories
get_diffNetworks_singleOmic

Generate differential networks for single omic analysis
View_diffNetworks

Interactive visualisation of differential networks
calc_pvalues_network

Calculate the p values for specific category network samples
synthetic_OlinkData

Synthetic RNA-seq count data
synthetic_rnaseqData

Synthetic RNA-seq count data
synthetic_proteomicData

Synthetic RNA-seq count data
multiDEGGs_filter

multiDEGGs_filter