Learn R Programming

mutoss (version 0.1-4)

adaptiveSTS: Storey-Taylor-Siegmund (2004) adaptive step-up procedure

Description

Storey-Taylor-Siegmund's (2004) adaptive step-up procedure

Usage

adaptiveSTS(pValues, alpha, lambda=0.5, silent=FALSE)

Arguments

pValues
The used raw pValues.
alpha
The level at which the FDR shall be controlled.
lambda
The tuning parameter for the estimation procedure (defaults to 0.5)
silent
If true any output on the console will be suppressed.

Value

  • A list containing:
  • adjPValuesA numeric vector containing the adjusted pValues
  • rejectedA logical vector indicating which hypotheses are rejected
  • criticalValuesA numeric vector containing critical values used in the step-up-down test
  • errorControlA Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Details

The adaptive STS procedure uses a conservative estimate of pi0 which is plugged in a linear step-up procedure. The estimation of pi0 requires a parameter (lambda) which is set to 0.5 by default. Note that the estimated pi0 is truncated at 1 as suggested by the author, so the implemetation of the procedure is not entirely supported by the proof in the reference.

References

Storey, J.D., Taylor, J.E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical Society, B 66(1):187-205.

Examples

Run this code
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9,max=1))
result <- adaptiveSTS(p, alpha, lambda=0.5)
result <- adaptiveSTS(p, alpha, lambda=0.5, silent=TRUE)

Run the code above in your browser using DataLab