Learn R Programming

netClass (version 1.2.1)

cv.aep: Cross validation for aepSVM (aepSVM)

Description

Cross validation for aepSVM (aepSVM) using SAM to select significant differential expressed genes

Usage

cv.aep(x, y, folds = 10, repeats = 5, parallel = FALSE, cores
                 = 2, DEBUG = TRUE, Gsub = matrix(1, 100, 100), 
                 Cs = 10^(-3:3), seed = 1234)

Arguments

x
a p x n matrix of expression measurements with p samples and n genes.
y
a factor of length p comprising the class labels.
folds
number of -folds cross validation (CV)
repeats
number of CV repeat times
parallel
paralle computing or not
cores
cores used in parallel computing
DEBUG
show more results or not
Gsub
Adjacency matrix of Protein-protein interaction network
Cs
soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).
seed
seed for random sampling.

Value

  • a LIST for Cross-Validation results
  • aucThe AUC values of each test fold
  • fitsThe tranined models for traning folds
  • featThe feature selected by each by the fits
  • labelsthe original lables for training

References

Guo et al., Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 2005, 6:58.

Examples

Run this code
library(netClass)
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y

 library(KEGG.db)
#r.aep <- cv.aep(x[,1:500], y, folds=3, repeats=1, parallel=FALSE,cores=2,
#			Gsub=ad.matrix,	Cs=10^(-3:3),seed=1234,DEBUG=TRUE)

Run the code above in your browser using DataLab