Learn R Programming

netClass (version 1.2.1)

cv.frsvm: Cross validation for FrSVM

Description

Cross validation for FrSVM, an R algorithm, which integrates protein-protein interaction network information into gene selection for microarry classification

Usage

cv.frsvm(x, y, folds = 10, Gsub = matrix(1, 100, 100), repeats  = 5, parallel = FALSE, cores = 2, DEBUG = FALSE, d = 0.85, top.uper = 10, top.lower = 50, seed = 1234, Cs = 10^c(-3:3))

Arguments

x
gene expression data
y
class labels
folds
number of -folds cross validation (CV)
Gsub
Adjacency matrix of Protein-protein intersction network
repeats
number of CV repeat times
parallel
paralle computing or not
cores
cores used in parallel computing
DEBUG
show more results or not
d
damping factor for GeneRank, defaults value is 0.5
top.uper
the uper bound of top ranked genes
top.lower
the lower bound of top ranked genes
seed
Seed for random sampling.
Cs
soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

Value

a LIST for Cross-Validation results
auc
The AUC values of each test fold
fits
The tranined models for traning folds
feat
The feature selected by each by the fits
labels
the original lables for training

References

Yupeng Cun, Holger Frohlich (2012) Integrating Prior Knowledge Into Prognostic Biomarker Discovery Based on Network Structure, arXiv:1212.3214 Winter C, Kristiansen G, Kersting S, Roy J, Aust D, et al. (2012) Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes. PLoS Comput Biol 8(5): e1002511.

Examples

Run this code
library(netClass)
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y
### 
r.frsvm <-cv.frsvm(x[,1:200], y, folds=3,Gsub=ad.matrix, repeats=1, parallel=FALSE,
	cores=2, DEBUG=TRUE,d=.85,top.uper=5,top.lower=15,seed=1234,Cs=10^c(-3:3))


Run the code above in your browser using DataLab