Learn R Programming

netClass (version 1.2.1)

cv.hubc: Cross validation for hub nodes classification

Description

Cross validation for hub nodes classification, which described in Taylor et al.(2009).

Usage

cv.hubc(x, y, folds = 10, repeats = 5, parallel = TRUE, cores  = NULL, 
		DEBUG = TRUE, nperm = 500, node.ct = 0.98, Gsub = matrix(1, 100, 100), 
		Gs = Gs, seed = 1234, Cs = 10^c(-3:3))

Arguments

x
a p x n matrix of expression measurements with p samples and n genes.
y
a factor of length p comprising the class labels.
folds
number of -folds cross validation (CV)
repeats
number of CV repeat times
parallel
paralle computing or not
cores
cores used in parallel computing
DEBUG
show more results or not
nperm
number of permutation test steps
node.ct
cut off value for select highly quantile nodes in a nwtwork. Defaults to 0.98).
Gsub
an adjacency matrix that represents the underlying biological network.
Gs
Undirected of graph with adjacency matrix Gsub.
seed
Seed for random sampling.
Cs
Soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

Value

  • aucThe AUC values of each test fold
  • fitsThe tranined models for traning folds
  • featThe selected features of each training folds
  • labelsthe original lables for training

References

Taylor et al.(2009)Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nat. Biotech.: doi: 10.1038/nbt.1522

Examples

Run this code
data(ad.matrix)
 #data(Gs2)
 library(netClass)
 data(expr)
 x <- expr$genes
 y <- expr$y


# r.hubC <- cv.hubc(x=x, y=y, folds=3, repeats=1, parallel=FALSE, cores=2, DEBUG=TRUE,
#				nperm=2, Gsub=ad.matrix,Gs=Gs2,node.ct=0.5,Cs=10^(-3:3))

Run the code above in your browser using DataLab