Learn R Programming

netClass (version 1.2.1)

cv.pac: Cross validation for Pathway Activities Classification(PAC)

Description

Cross validation for Pathway Activities Classification(PAC) using Logistic regression model for classification. Implementation of the Pathway Activities Classification by CROG algorithm.

Usage

cv.pac(x=x, y=y, folds=10, repeats=5, parallel = TRUE, cores = NULL, DEBUG=TRUE, Gsub=matrix(1,100,100), seed=1234)

Arguments

x
a p x n matrix of expression measurements with p samples and n genes.
y
a factor of length p comprising the class labels.
folds
number of -folds cross validation (CV)
repeats
number of CV repeat times
parallel
paralle computing or not
cores
cores used in parallel computing
DEBUG
show debugging information in screen or not.
Gsub
Adjacency matrix of Protein-protein intersction network
seed
seed for random sampling.

Value

a LIST for Cross-Validation results
auc
The AUC values of each test fold
fits
The tranined models for traning folds
feat
The feature selected by each by the fits
labels
the original lables for training

References

Lee E, Chuang H-Y, Kim J-W, Ideker T, Lee D (2008) Inferring Pathway Activity toward Precise Disease Classification. PLoS Comput Biol 4(11): e1000217.

Examples

Run this code
library(netClass)
 
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y

library(KEGG.db)
r.pac <- cv.pac(x=x, y=y, folds=3, repeats=1, parallel=FALSE, cores=2, DEBUG=TRUE,
				Gsub=ad.matrix,seed=1234)

Run the code above in your browser using DataLab