Learn R Programming

netClass (version 1.2.1)

cv.stsvm: Cross validation for smoothed t-statistic to select significant top ranked differential expressed genes

Description

Cross validation for smoothed t-statistic to select significant top ranked differential expressed genes

Usage

cv.stsvm(x=x, x.mi=NULL,y=y, folds=5,Gsub=matrix(1,100,100),op.method=c("pt","spb"), 
		repeats=3, parallel=FALSE, cores=2,DEBUG=TRUE, pt.pvalue=0.05,op=0.85,
		aa=1000,a=1,p=2,allF=TRUE, seed=1234,Cs=10^c(-3:3))

Arguments

x
A p x n matrix of expression measurements with p samples and n genes.
x.mi
A p x m matrix of expression measurements with p samples and m miRNAs.
y
A factor of length p comprising the class labels.
folds
Folds number of folds to perform
Gsub
An adjacency matrix that represents the underlying biological network.
op.method
Method for selecet optimal feature subgoups: pt is permutation test, sp is span bound.
repeats
Number of how often to repeat the x-fold cross-validation
parallel
Use parallel computing or not
cores
Number of cores will used when parallel is TRUE
DEBUG
Show debugging information in screen more or less.
pt.pvalue
Cut off p-value of permutation test
op
Optimal on top op
aa
permutation test steps for permutation test (pt); low bounds top op
a
constant value of random walk kernel
p
random walk step(s) of random walk kernel
allF
Using all features (TRUE) or only these genes mapped to prior information (FALSE).
seed
seed for random sampling.
Cs
Soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

Value

  • a LIST for Cross-Validation results
  • aucThe AUC values of each test fold
  • fitsThe tranined models for traning folds
  • featThe feature selected by each by the fits
  • labelsthe original lables for training

References

Yupeng Cun, Holger Frohlich (2013) Network and Data Integration for Biomarker Signature Discovery via Network Smoothed T-Statistics. PLoS ONE 8(9): e73074.

Examples

Run this code
library(netClass)
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y

r.stsvm <- cv.stsvm(x=x[,1:500],x.mi=NULL,y=y,folds=3,Gsub=ad.matrix,op.method="pt",
				repeats=1, parallel=FALSE, cores=2,DEBUG=TRUE,pt.pvalue=0.05,op=0.9,
				aa=5,a=1,p=2,allF=TRUE, seed=1234,Cs=10^(-3:3))

Run the code above in your browser using DataLab