Compute the (infinite time) controllability Gramian for the discrete linear time invariant system described by \(x(t+1) = Ax(t) + Bu(t)\).
The infinite time controllability Gramian is the solution to the discrete Lyapunov equation \(AWA^\prime-W = -BB^\prime\), while the finite time Gramian for time \(T\) is
$$W_t = \sum_{t = 0}^T A^tBB^\prime(A^\prime)^t$$
Usage
control_gramian(A, B, t = NA)
Arguments
A
\(n x n\) matrix.
B
\(n x m\) matrix.
t
Either NA for infinite time Gramian, or a positive non-zero integer. Defaults to NA.
Value
The infinite time or finite time controllability Gramian
# NOT RUN {A = matrix(c(0,-3,-2,2,-2,1,-1,2,-1), 3,3)
B = diag(3)
#Infinite time GramianW_inf = control_gramian(A, B)
#4 time GramianW_4 = control_gramian(A,B,4)
# }