Learn R Programming

openCR (version 2.2.6)

print.openCR: Print or Summarise openCR Object

Description

Print results from fitting a spatially explicit capture--recapture model, or generate a list of summary data.

Usage

# S3 method for openCR
print (x, newdata = NULL, alpha = 0.05, svtol = 1e-5,...)
# S3 method for openCR
summary (object, newdata = NULL, alpha = 0.05, svtol = 1e-5, deriv = FALSE, ...)

Value

The summary method constructs a list of outputs similar to those printed by the print method, but somewhat more concise and re-usable:

versiontimesecr version, and date and time fitting started
traps*detector summary
capthistcapthist summary (primary and secondary sessions, numbers of animals and detections)
intervalsintervals between primary sessions
mask*mask summary
modeldetailsmiscellaneous model characteristics (type etc.)
AICtablesingle-line output of AIC.openCR
coeftable of fitted coefficients with CI
predictedpredicted values (`real' parameter estimates)
derivedoutput of derived.openCR (optional)

* spatial models only

Arguments

x

openCR object output from openCR.fit

object

openCR object output from openCR.fit

newdata

optional dataframe of values at which to evaluate model

alpha

alpha level

svtol

threshold for non-null eigenvalues when computing numerical rank

deriv

logical; if TRUE then table of derived parameters is calculated

...

other arguments passed to derived.openCR by summary.openCR

Details

Results are potentially complex and depend upon the analysis (see below). Optional newdata should be a dataframe with a column for each of the variables in the model. If newdata is missing then a dataframe is constructed automatically. Default newdata are for a naive animal on the first occasion; numeric covariates are set to zero and factor covariates to their base (first) level. Confidence intervals are 100 (1 -- alpha) % intervals.

callthe function call
timedate and time fitting started
N animalsnumber of distinct animals detected
N capturesnumber of detections
N sessionsnumber of sampling occasions
Modelmodel formula for each `real' parameter
Fixedfixed real parameters
N parametersnumber of parameters estimated
Log likelihoodlog likelihood
AICAkaike's information criterion
AICcAIC with small sample adjustment (Burnham and Anderson 2002)
Beta parameterscoef of the fitted model, SE and confidence intervals
Eigenvaluesscaled eigenvalues of Hessian matrix (maximum 1.0)
Numerical ranknumber of eigenvalues exceeding svtol
vcovvariance-covariance matrix of beta parameters
Real parametersfitted (real) parameters evaluated at base levels of covariates

AICc is computed with the default sample size (number of individuals) and parameter count (use.rank = FALSE).

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second edition. New York: Springer-Verlag.

See Also

AIC.openCR, openCR.fit

Examples

Run this code

if (FALSE) {

c1 <- openCR.fit(ovenCH, type='CJS', model=phi~session)
c1

}

Run the code above in your browser using DataLab