Optimizes the distance in measure criterion.
max_distance_measure(
lower,
upper,
optimcontrol = NULL,
batchsize,
integration.param,
T,
model
)
A list containing
par
a matrix batchsize*d
containing the optimal points
value
if optimcontrol$optim.option!=1
and optimcontrol$method=="genoud"
(default options) a vector of length batchsize
containing the optimum at each step
otherwise the value of the criterion at the optimum.
a \(d\) dimensional vector containing the lower bounds for the optimization
a \(d\) dimensional vector containing the upper bounds for the optimization
the parameters for the optimization, see max_sur_parallel for more details.
number of simulations points to find
the parameters for the integration of the criterion, see max_sur_parallel for more details.
threshold value
a km model
Azzimonti D. F., Bect J., Chevalier C. and Ginsbourger D. (2016). Quantifying uncertainties on excursion sets under a Gaussian random field prior. SIAM/ASA Journal on Uncertainty Quantification, 4(1):850–874.
Azzimonti, D. (2016). Contributions to Bayesian set estimation relying on random field priors. PhD thesis, University of Bern.