Learn R Programming

⚠️There's a newer version (1.1.0) of this package.Take me there.

parsnip (version 0.1.1)

A Common API to Modeling and Analysis Functions

Description

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc).

Copy Link

Version

Install

install.packages('parsnip')

Monthly Downloads

49,201

Version

0.1.1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

May 6th, 2020

Functions in parsnip (0.1.1)

boost_tree

General Interface for Boosted Trees
mlp

General Interface for Single Layer Neural Network
mars

General Interface for MARS
linear_reg

General Interface for Linear Regression Models
keras_mlp

Simple interface to MLP models via keras
model_spec

Model Specification Information
model_fit

Model Fit Object Information
multi_predict

Model predictions across many sub-models
logistic_reg

General Interface for Logistic Regression Models
model_printer

Print helper for model objects
multinom_reg

General Interface for Multinomial Regression Models
get_model_env

Working with the parsnip model environment
nearest_neighbor

General Interface for K-Nearest Neighbor Models
fit.model_spec

Fit a Model Specification to a Dataset
surv_reg

General Interface for Parametric Survival Models
show_call

Print the model call
predict_class.model_fit

Other predict methods.
has_multi_predict

Tools for models that predict on sub-models
tidy.model_fit

Turn a parsnip model object into a tidy tibble
set_args

Change elements of a model specification
translate

Resolve a Model Specification for a Computational Engine
tidy.nullmodel

Tidy method for null models
eval_args

Evaluate parsnip model arguments
svm_poly

General interface for polynomial support vector machines
rand_forest

General Interface for Random Forest Models
null_model

General Interface for null models
rpart_train

Decision trees via rpart
predict.model_fit

Model predictions
set_engine

Declare a computational engine and specific arguments
svm_rbf

General interface for radial basis function support vector machines
make_classes

Prepend a new class
varying

A placeholder function for argument values
varying_args.model_spec

Determine varying arguments
type_sum.model_spec

Succinct summary of parsnip object
nullmodel

Fit a simple, non-informative model
set_new_model

Tools to Register Models
reexports

Objects exported from other packages
xgb_train

Boosted trees via xgboost
check_empty_ellipse

Check to ensure that ellipses are empty
add_rowindex

Add a column of row numbers to a data frame
decision_tree

General Interface for Decision Tree Models
control_parsnip

Control the fit function
descriptors

Data Set Characteristics Available when Fitting Models
convert_args

Make a table of arguments
convert_stan_interval

Convenience function for intervals
null_value

Functions required for parsnip-adjacent packages
C5.0_train

Boosted trees via C5.0