
Last chance! 50% off unlimited learning
Sale ends in
multinom_reg()
is a way to generate a specification of a model
before fitting and allows the model to be created using
different packages in R, keras, or Spark. The main arguments for the
model are:
penalty
: The total amount of regularization
in the model. Note that this must be zero for some engines.
mixture
: The proportion of L1 regularization in
the model. Note that this will be ignored for some engines.
These arguments are converted to their specific names at the
time that the model is fit. Other options and argument can be
set using set_engine()
. If left to their defaults
here (NULL
), the values are taken from the underlying model
functions. If parameters need to be modified, update()
can be used
in lieu of recreating the object from scratch.
multinom_reg(mode = "classification", penalty = NULL, mixture = NULL)# S3 method for multinom_reg
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...
)
A single character string for the type of model. The only possible value for this model is "classification".
A non-negative number representing the total
amount of regularization (glmnet
, keras
, and spark
only).
For keras
models, this corresponds to purely L2 regularization
(aka weight decay) while the other models can be a combination
of L1 and L2 (depending on the value of mixture
).
A number between zero and one (inclusive) that
represents the proportion of regularization that is used for the
L2 penalty (i.e. weight decay, or ridge regression) versus L1
(the lasso) (glmnet
only).
A multinomial regression model specification.
A 1-row tibble or named list with main
parameters to update. If the individual arguments are used,
these will supersede the values in parameters
. Also, using
engine arguments in this object will result in an error.
A logical for whether the arguments should be modified in-place of or replaced wholesale.
Not used for update()
.
Engines may have pre-set default arguments when executing the model fit call. For this type of model, the template of the fit calls are below.
multinom_reg() %>% set_engine("glmnet") %>% set_mode("classification") %>% translate()
## Multinomial Regression Model Specification (classification) ## ## Computational engine: glmnet ## ## Model fit template: ## glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(), ## family = "multinomial")
For glmnet
models, the full regularization path is always fit
regardless of the value given to penalty
. Also, there is the option to
pass multiple values (or no values) to the penalty
argument. When
using the predict()
method in these cases, the return value depends on
the value of penalty
. When using predict()
, only a single value of
the penalty can be used. When predicting on multiple penalties, the
multi_predict()
function can be used. It returns a tibble with a list
column called .pred
that contains a tibble with all of the penalty
results.
multinom_reg() %>% set_engine("nnet") %>% set_mode("classification") %>% translate()
## Multinomial Regression Model Specification (classification) ## ## Computational engine: nnet ## ## Model fit template: ## nnet::multinom(formula = missing_arg(), data = missing_arg(), ## weights = missing_arg(), trace = FALSE)
multinom_reg() %>% set_engine("spark") %>% set_mode("classification") %>% translate()
## Multinomial Regression Model Specification (classification) ## ## Computational engine: spark ## ## Model fit template: ## sparklyr::ml_logistic_regression(x = missing_arg(), formula = missing_arg(), ## weight_col = missing_arg(), family = "multinomial")
multinom_reg() %>% set_engine("keras") %>% set_mode("classification") %>% translate()
## Multinomial Regression Model Specification (classification) ## ## Computational engine: keras ## ## Model fit template: ## parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1, ## act = "linear")
The standardized parameter names in parsnip can be mapped to their original names in each engine that has main parameters:
parsnip | glmnet | spark | keras | nnet |
penalty | lambda | reg_param | penalty | decay |
mixture | alpha | elastic_net_param | NA | NA |
For multinom_reg()
, the mode will always be "classification".
The model can be created using the fit()
function using the
following engines:
R: "glmnet"
(the default), "nnet"
Stan: "stan"
keras: "keras"
# NOT RUN {
multinom_reg()
# Parameters can be represented by a placeholder:
multinom_reg(penalty = varying())
model <- multinom_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)
# }
Run the code above in your browser using DataLab