Learn R Programming

pcIRT (version 0.1)

weight_test: Test for the scoring weights in the unidimensional polytomous Rasch model

Description

This functions tests the fit of fixed scoring parameters in a unidimensional polytomous Rasch model.

Usage

weight_test(MPRMobj, score_param)

## S3 method for class 'wt': summary(object, \dots) ## S3 method for class 'wt': print(x, \dots)

Arguments

MPRMobj
Object of class MPRM
score_param
Numerical vector with the scoring parameters that are tested
object
object of class wt
x
{object of class wt}
...
...

Value

  • emp_Chi2$\chi^2$ distributed value of the Likelihood Ratio test
  • dfdegrees of freedom of the test statistic
  • pvalp value of the test statistic
  • unconstrLoglikelihoodlog-likelihood of the unconstrained model
  • constrLoglikelihoodlog-likelihood of the constrained model
  • unconstrNrParnumber of estimated parameters in the unconstrained model
  • constrNrParnumber of estimated parameters in the constrained model
  • unconstrItemparestimated item parameters of the unconstrained model
  • constrItemparestimated item parameters of the constrained model
  • unconstrScoreParameterestimated scoring parameters of the unconstrained model

Details

If the unidimensional polytomous Rasch model fits the data, the weight test can be performed to test whether assumed scoring parameters are appropriate. An unconstrained unidimensional polytomous Rasch model is calculated including estimation of scoring parameters. Furthermore a constrained unidimensional polytomous Rasch model is estimated with fixed scoring parameters (according to the input). Subsequently a Likelihood Ratio test tests the fit of the fixed scoring parameters.

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

See Also

MPRM dLRT

Examples

Run this code
#simulate data set
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2), ncol=4),0), 500)

#estimate MPRM item parameters
res_mprm <- MPRM(simdat$datmat)

#tests the scoring parameter 0.5 for the unidimensional polytomous model
res_weight <- weight_test(res_mprm,  score_param=c(0.5))
summary(res_weight)

Run the code above in your browser using DataLab