The functions muPE1D
and asyvarPE1D
and their auxiliary functions.
muPE1D
returns the mean of the (arc) density of PE-PCD
and asyvarPE1D
returns the (asymptotic) variance of the arc density of PE-PCD
for a given centrality parameter
muPE1D
uses auxiliary (internal) function mu1PE1D
which yields mean (i.e., expected value)
of the arc density of PE-PCD for a given
asyvarPE1D
uses auxiliary (internal) functions fvar1
which yields asymptotic variance
of the arc density of PE-PCD for fvar2
which yields asymptotic variance
of the arc density of PE-PCD for
See also (ceyhan:metrika-2012;textualpcds).
mu1PE1D(r, c)muPE1D(r, c)
fvar1(r, c)
fvar2(r, c)
asyvarPE1D(r, c)
muPE1D
returns the mean and asyvarPE1D
returns the asymptotic variance of the
arc density of PE-PCD for
A positive real number which serves as the expansion parameter in PE proximity region;
must be
A positive real number in int
Elvan Ceyhan
muCS1D
and asyvarCS1D
if (FALSE) {
#Examples for muPE1D
muPE1D(1.2,.4)
muPE1D(1.2,.6)
rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
mu.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
mu.grid[i,j]<-muPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,mu.grid, xlab="r", ylab="c", zlab="mu(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")
}
if (FALSE) {
#Examples for asyvarPE1D
asyvarPE1D(1.2,.8)
rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
var.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
var.grid[i,j]<-asyvarPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,var.grid, xlab="r", ylab="c", zlab="var(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")
}
Run the code above in your browser using DataLab