pdmClass(formula , method = c("pls", "pcr", "ridge"), keep.fitted =
TRUE, ...)"fda". Use predict to extract
discriminant variables, posterior probabilities or predicted class
memberships. Other extractor functions are coef,
and plot.The object has the following components:
values / (1-values), which are used
to define percent.explained.fda (this only makes sense if
some columns of theta are omitted---see the references).predict to work properly.method.update-able)"Flexible Disriminant Analysis by Optimal Scoring" by Hastie, Tibshirani and Buja, 1994, JASA, 1255-1270.
"Penalized Discriminant Analysis" by Hastie, Buja and Tibshirani, Annals of Statistics, 1995 (in press).
library(fibroEset)
data(fibroEset)
y <- as.factor(pData(fibroEset)[,2])
x <- t(exprs(fibroEset))
pdmClass(y ~ x)
Run the code above in your browser using DataLab