# \donttest{
# we simulate outcomes with an additive genetic effect. The kinship matrix is
# the same for all families and given by
K <- matrix(c(
0.5 , 0 , 0.25 , 0 , 0.25 , 0 , 0.125 , 0.125 , 0.125 , 0.125 ,
0 , 0.5 , 0.25 , 0 , 0.25 , 0 , 0.125 , 0.125 , 0.125 , 0.125 ,
0.25 , 0.25 , 0.5 , 0 , 0.25 , 0 , 0.25 , 0.25 , 0.125 , 0.125 ,
0 , 0 , 0 , 0.5 , 0 , 0 , 0.25 , 0.25 , 0 , 0 ,
0.25 , 0.25 , 0.25 , 0 , 0.5 , 0 , 0.125 , 0.125 , 0.25 , 0.25 ,
0 , 0 , 0 , 0 , 0 , 0.5 , 0 , 0 , 0.25 , 0.25 ,
0.125, 0.125, 0.25 , 0.25, 0.125, 0 , 0.5 , 0.25 , 0.0625, 0.0625,
0.125, 0.125, 0.25 , 0.25, 0.125, 0 , 0.25 , 0.5 , 0.0625, 0.0625,
0.125, 0.125, 0.125, 0 , 0.25 , 0.25, 0.0625, 0.0625, 0.5 , 0.25 ,
0.125, 0.125, 0.125, 0 , 0.25 , 0.25, 0.0625, 0.0625, 0.25 , 0.5
), 10)
# simulates a data set.
#
# Args:
# n_fams: number of families.
# beta: the fixed effect coefficients.
# sig_sq: the scale parameter.
sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = 3){
# setup before the simulations
Cmat <- 2 * K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq * Cmat
Sig_chol <- chol(Sig)
# simulate the data
out <- replicate(
n_fams, {
# simulate covariates
X <- cbind(`(Intercept)` = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)
# assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %*% Sig_chol)
# return the list in the format needed for the package
list(y = as.numeric(eta > 0), X = X, scale_mats = list(Cmat))
}, simplify = FALSE)
# add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out
}
# simulate the data
set.seed(1)
dat <- sim_dat(100L)
# fit the model
ptr <- pedigree_ll_terms(dat, max_threads = 1L)
start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L)
fit <- pedmod_opt(ptr = ptr, par = start$par, n_threads = 1L, use_aprx = TRUE,
maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps = 1e-3)
fit$par # the estimate
-fit$value # the log maximum likelihood
start$logLik_no_rng # the log maximum likelihood without the random effects
# }
Run the code above in your browser using DataLab