pgam(formula, dataset, omega = 0.5, beta = 0.1, offset = 1, digits = getOption("digits"),
maxit = 100, eps = 1e-06, control = list(trace = 10, REPORT = 10, maxit = 100, abstol = 1e-04,
reltol = 0.001, factr = 1e+07, pgtol = 0), optim.method = "BFGS", partial.resid = "response",
smoother = "spline", bkf.eps = 0.001, bkf.maxit = 100, numerical.se = TRUE, verbose = TRUE)
pgam.parser
for detailsoptim
. See its help for detailsoptim
. See its help for detailsresiduals.pgam
for detailspgam.smooth
for detailsTRUE
numerical standard error of parameters are returned, else analytical ones are returnedTRUE
information during estimation process is printed outpgam
.Specific information can be obtained on functions help.
This algorithm fits fully parametric Poisson-Gamma model also.
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para S�ries Temporais de Dados de Contagem - Teoria e Aplica��es. 10a ESTE - Escola de S�ries Temporais e Econometria
Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London
predict.pgam
, pgam.parser
, residuals.pgam
, backfitting
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS",partial.resid="response")
summary(m)
Run the code above in your browser using DataLab