## S3 method for class 'pgam':
summary(object, ...)
Arguments
object
object of class pgam holding the fitted model
...
further arguments passed to method
Value
List containing all the information about the model fitted.
Details
Hypothesis tests of coefficients are based o t distribution. Significance tests of smooth terms are approximate for model selection purpose only. Be very careful about the later.
References
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para S�ries Temporais de Dados de Contagem - Teoria e Aplica��es. 10a ESTE - Escola de S�ries Temporais e Econometria
Junger, W. L. (2004) Modelo Poisson-Gama Semi-Param�trico: Uma Abordagem de Penaliza��o por Rugosidade. MSc Thesis. Rio de Janeiro, PUC-Rio, Departamento de Engenharia El�trica
Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London
Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London
McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition, London
Pierce, D. A., Schafer, D. W. (1986) Residuals in generalized linear models. Journal of the American Statistical Association, 81(396),977-986
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")
summary(m)