Learn R Programming

photosynthesis (version 1.0.2)

make_parameters: Make lists of parameters for photosynthesis

Description

Make lists of parameters for photosynthesis

make_leafpar

make_enviropar

make_bakepar

make_constants

Usage

make_leafpar(replace = NULL, use_tealeaves)

make_enviropar(replace = NULL, use_tealeaves)

make_bakepar(replace = NULL)

make_constants(replace = NULL, use_tealeaves)

Arguments

replace

A named list of parameters to replace defaults. If NULL, defaults will be used.

use_tealeaves

Logical. Should leaf energy balance be used to calculate leaf temperature (T_leaf)? If TRUE, tleaf calculates T_leaf. If FALSE, user-defined T_leaf is used. Additional parameters and constants are required, see make_parameters.

Value

make_leafpar: An object inheriting from class leaf_par make_enviropar: An object inheriting from class enviro_par make_bakepar: An object inheriting from class bake_par make_constants: An object inheriting from class constants

Details

Constants:

Symbol R Description Units Default
\(D_{c,0}\) D_c0 diffusion coefficient for CO2 in air at 0 <U+00B0>C m\(^2\) / s 1.29e-5
\(D_{h,0}\) D_h0 diffusion coefficient for heat in air at 0 <U+00B0>C m\(^2\) / s 1.90e-5
\(D_{m,0}\) D_m0 diffusion coefficient for momentum in air at 0 <U+00B0>C m\(^2\) / s 1.33e-5
\(D_{w,0}\) D_w0 diffusion coefficient for water vapor in air at 0 <U+00B0>C m\(^2\) / s 2.12e-5
\(\epsilon\) epsilon ratio of water to air molar masses none 0.622
\(G\) G gravitational acceleration m / s\(^2\) 9.8
\(eT\) eT exponent for temperature dependence of diffusion none 1.75
\(R\) R ideal gas constant J / (mol K) 8.3144598
\(\sigma\) s Stephan-Boltzmann constant W / (m\(^2\) K\(^4\)) 5.67e-08

Baking (i.e. temperature response) parameters:

Symbol R Description Units Default
\(D_\mathrm{s,gmc}\) Ds_gmc empirical temperature response parameter J / (mol K) 487.29
\(D_\mathrm{s,Jmax}\) Ds_Jmax empirical temperature response parameter J / (mol K) 388.04
\(E_\mathrm{a,\Gamma *}\) Ea_gammastar empirical temperature response parameter J / mol 24459.97
\(E_\mathrm{a,gmc}\) Ea_gmc empirical temperature response parameter J / mol 68901.56
\(E_\mathrm{a,Jmax}\) Ea_Jmax empirical temperature response parameter J / mol 56095.18
\(E_\mathrm{a,KC}\) Ea_KC empirical temperature response parameter J / mol 80989.78
\(E_\mathrm{a,KO}\) Ea_KO empirical temperature response parameter J / mol 23719.97
\(E_\mathrm{a,Rd}\) Ea_Rd empirical temperature response parameter J / mol 40446.75
\(E_\mathrm{a,Vcmax}\) Ea_Vcmax empirical temperature response parameter J / mol 52245.78
\(E_\mathrm{d,gmc}\) Ed_gmc empirical temperature response parameter J / mol 148788.56

Environment parameters:

Symbol R Description Units Default
\(C_\mathrm{air}\) C_air atmospheric CO2 concentration Pa 41
\(O\) O atmospheric O2 concentration kPa 21.27565
\(P\) P atmospheric pressure kPa 101.3246
PPFD PPFD photosynthetic photon flux density umol quanta / (m^2 s) 1500
\(\mathrm{RH}\) RH relative humidity none 0.50

Leaf parameters:

Symbol R Description Units Default
\(d\) leafsize leaf characteristic dimension m 0.1
\(\Gamma*\) gamma_star chloroplastic CO2 compensation point (T_leaf) Pa calculated
\(\Gamma*_{25}\) gamma_star25 chloroplastic CO2 compensation point (25 <U+00B0>C) Pa 3.743
\(g_\mathrm{mc}\) g_mc mesophyll conductance to CO2 (T_leaf) \(\mu\)mol CO2 / (m\(^2\) s Pa) calculated
\(g_\mathrm{mc}\) g_mc25 mesophyll conductance to CO2 (25 <U+00B0>C) \(\mu\)mol CO2 / (m\(^2\) s Pa) 4
\(g_\mathrm{sc}\) g_sc stomatal conductance to CO2 \(\mu\)mol CO2 / (m\(^2\) s Pa) 4
\(g_\mathrm{uc}\) g_uc cuticular conductance to CO2 \(\mu\)mol CO2 / (m\(^2\) s Pa) 0.1
\(J_\mathrm{max25}\) J_max25 potential electron transport (25 <U+00B0>C) \(\mu\)mol CO2 / (m\(^2\) s) 200
\(J_\mathrm{max}\) J_max potential electron transport (T_leaf) \(\mu\)mol CO2 / (m\(^2\) s) calculated
\(k_\mathrm{mc}\) k_mc partition of \(g_\mathrm{mc}\) to lower mesophyll none 1
\(k_\mathrm{sc}\) k_sc partition of \(g_\mathrm{sc}\) to lower surface none 1
\(k_\mathrm{uc}\) k_uc partition of \(g_\mathrm{uc}\) to lower surface none 1
\(K_\mathrm{C25}\) K_C25 Michaelis constant for carboxylation (25 <U+00B0>C) \(\mu\)mol / mol 268.3
\(K_\mathrm{C}\) K_C Michaelis constant for carboxylation (T_leaf) \(\mu\)mol / mol calculated
\(K_\mathrm{O25}\) K_O25 Michaelis constant for oxygenation (25 <U+00B0>C) \(\mu\)mol / mol 165084.2
\(K_\mathrm{O}\) K_O Michaelis constant for oxygenation (T_leaf) \(\mu\)mol / mol calculated
\(\phi_J\) phi_J initial slope of the response of J to PPFD none 0.331
\(R_\mathrm{d25}\) R_d25 nonphotorespiratory CO2 release (25 <U+00B0>C) \(\mu\)mol CO2 / (m\(^2\) s) 2
\(R_\mathrm{d}\) R_d nonphotorespiratory CO2 release (T_leaf) \(\mu\)mol CO2 / (m\(^2\) s) calculated
\(\theta_J\) theta_J curvature factor for light-response curve none 0.825
\(T_\mathrm{leaf}\) T_leaf leaf temperature K 298.15
\(V_\mathrm{c,max25}\) V_cmax25 maximum rate of carboxylation (25 <U+00B0>C) \(\mu\)mol CO2 / (m\(^2\) s) 150
\(V_\mathrm{c,max}\) V_cmax maximum rate of carboxylation (T_leaf) \(\mu\)mol CO2 / (m\(^2\) s) calculated
\(V_\mathrm{tpu25}\) V_tpu25 rate of triose phosphate utilization (25 <U+00B0>C) \(\mu\)mol CO2 / (m\(^2\) s) 200

If use_tealeaves = TRUE, additional parameters are:

Constants:

Symbol R Description Units Default
\(c_p\) c_p heat capacity of air J / (g K) 1.01
\(R_\mathrm{air}\) R_air specific gas constant for dry air J / (kg K) 287.058

Environmental parameters:

Symbol R Description Units Default
\(E_q\) E_q energy per mole quanta kJ / mol\(^2\) 220
\(f_\mathrm{PAR}\) f_par fraction of incoming shortwave radiation that is photosynthetically active radiation (PAR) none 0.5
\(r\) r reflectance for shortwave irradiance (albedo) none 0.2
\(T_\mathrm{air}\) T_air air temperature K 298.15

Leaf parameters:

Symbol R Description Units Default
\(\alpha_\mathrm{l}\) abs_l absorbtivity of longwave radiation (4 - 80 \(\mu\)m) none 0.97
\(\alpha_\mathrm{s}\) abs_s absorbtivity of shortwave radiation (0.3 - 4 \(\mu\)m) none 0.50
\(g_\mathrm{sw}\) g_sw stomatal conductance to H2O (\(\mu\)mol H2O) / (m\(^2\) s Pa) converted from \(g_\mathrm{sc}\)
\(g_\mathrm{uw}\) g_uw cuticular conductance to H2O (\(\mu\)mol H2O) / (m\(^2\) s Pa) converted from \(g_\mathrm{uc}\)

References

Buckley TN and Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-11.

Examples

Run this code
# NOT RUN {
bake_par <- make_bakepar()
constants <- make_constants(use_tealeaves = FALSE)
enviro_par <- make_enviropar(use_tealeaves = FALSE)
leaf_par <- make_leafpar(use_tealeaves = FALSE)

leaf_par <- make_leafpar(
  replace = list(
    g_sc = set_units(3, "umol/m^2/s/Pa"),
    V_cmax25 = set_units(100, "umol/m^2/s")
  ), use_tealeaves = FALSE
)

# }

Run the code above in your browser using DataLab