Learn R Programming

phyclust (version 0.1-9)

phyclust.logL: Log-likelihood of phyclust

Description

This computes a log-likelihood value of phyclust.

Usage

phyclust.logL(X, ret.phyclust = NULL, K = NULL, Eta = NULL,
    Mu = NULL, pi = NULL, kappa = NULL, Tt = NULL,
    substitution.model = NULL, identifier = NULL, code.type = NULL,
    label = NULL)

Arguments

X
nid/sid matrix with $N$ rows/sequences and $L$ columns/sites.
ret.phyclust
an object with the class phyclust.
K
number of clusters.
Eta
proportion of subpopulations, $\eta_k$, length = K, sum to 1.
Mu
centers of subpopulations, dim = $K\times L$, each row is a center.
pi
equilibrium probabilities, each row sums to 1.
kappa
transition and transversion bias.
Tt
total evolution time, $t$.
substitution.model
substitution model.
identifier
identifier.
code.type
code type.
label
label of sequences for semi-supervised clustering.

Value

  • This function return a log-likelihood value of phyclust.

Details

X should be a numerical matrix containing sequence data that can be transfered by code2nid or code2sid.

Either input ret.phyclust or all other arguments for this function. ret.phyclust can be obtain either from an EM iteration of phyclust or from a M step of phyclust.m.step.

If label is inputted, the label information will be used to calculate log likelihood (complete-data), even the ret.phyclust is the result of unsuprvised clustering.

References

Phylogenetic Clustering Website: http://thirteen-01.stat.iastate.edu/snoweye/phyclust/

See Also

phyclust, phyclust.em.step.

Examples

Run this code
EMC.1 <- .EMC
EMC.1$EM.iter <- 1
# the same as EMC.1 <- .EMControl(EM.iter = 1)
X <- seq.data.toy$org

ret.1 <- phyclust(X, 2, EMC = EMC.1)
phyclust.logL(X, ret.phyclust = ret.1)

# For semi-supervised clustering.
semi.label <- rep(0, nrow(X))
semi.label[1:3] <- 1
phyclust.logL(X, ret.phyclust = ret.1, label = semi.label)

Run the code above in your browser using DataLab