## generate data
set.seed(123)
n = 100
d = 200
d1 = 10
rho0 = 0.3
lambda = c(3:1)*sqrt(log(d)/n)
Sigma = matrix(0,nrow=d,ncol=d)
Sigma[1:d1,1:d1] = rho0
diag(Sigma) = 1
mu = rep(0,d)
X = mvrnorm(n=2*n,mu=mu,Sigma=Sigma)
X.fit = X[1:n,]
X.pred = X[(n+1):(2*n),]
beta = c(rep(sqrt(1/3),3),rep(0,d-3))
Y.fit = exp(X.fit%*%beta)/(1+exp(X.fit%*%beta))
## Regression with "l1".
out=picasso(X=X.fit,Y=Y.fit,lambda=lambda,family="binomial")
## Display results
p=predict(out,X.pred)
Run the code above in your browser using DataLab