
Last chance! 50% off unlimited learning
Sale ends in
The pinbasic
package ships utilities for fast and stable estimation of
the probability of informed trading in the static PIN framework. The
function design is chosen to fit the extended EHO model setup but can
also be applied to the simpler EKOP model by equating the intensities of
uninformed buys and sells. State-of-the-art factorization of the model
likelihood function as well as most recent algorithms for generating
initial values for optimization routines are implemented. In total, two
likelihood factorizations and three methodologies for starting values
are included. Likelihood functions are evaluated with pin_ll
and sets
of starting values are returned by initial_vals
. The probability of
informed trading can be estimated for arbitrary length of daily buys and
sells data with pin_est
which is a wrapper around the workhorse
function pin_est_core
. No information about the time span of the
underlying data is required to perform optimizations with pin_est
.
However, the recommendation given in the literature is using at least
data for 60 trading days to ensure convergence of the likelihood
maximization. Quarterly estimates are returned by qpin
which can be
visualized with ggplot
. Datasets of daily aggregated numbers of buys
and sells can be simulated with simulateBS
. Calculation of confidence
intervals for the probability of informed trading can be enabled by
confint
argument in optimization routines (pin_est_core
, pin_est
and qpin
) or by calling pin_confint
directly. Additionally,
posterior probabilities for conditions of trading days can be computed
with posterior
and plotted with ggplot
.
The dataset BSfrequent
cover 60 trading days and represent a
frequently traded equity. Model parameters and the probability of
informed trading can be estimated with pin_est
.
library(pinbasic)
# Loading data
data("BSfrequent")
# Estimation
pin_freq <- pin_est(numbuys = BSfrequent[,"Buys"], numsells = BSfrequent[,"Sells"])
pin_freq
#> $Results
#> Estimate Std. error t value Pr(> t)
#> alpha 0.2000 0.05163873 3.873062 0.0001074766
#> delta 0.5000 0.14433702 3.464115 0.0005319794
#> epsilon_b 1805.4354 5.67230494 318.289553 0.0000000000
#> epsilon_s 1700.6753 5.50984189 308.661358 0.0000000000
#> mu 597.6107 14.60600145 40.915421 0.0000000000
#>
#> $ll
#> loglike
#> 1415607
#>
#> $pin
#> PIN
#> 0.03296587
#>
#> $conv
#> Convergence
#> 0
#>
#> $message
#> [1] "relative convergence (4)"
#>
#> $iterations
#> Iterations
#> 1
#>
#> $init_vals
#> alpha delta epsilon_b epsilon_s mu
#> 0.2000 0.5000 1805.4259 1700.6852 597.6111
#>
#> $posterior
#> no good bad
#> [1,] 1.000000e+00 1.054677e-28 8.603585e-38
#> [2,] 1.000000e+00 1.708301e-41 5.437236e-31
#> [3,] 1.000000e+00 7.029207e-40 1.412484e-38
#> [4,] 2.119110e-45 2.484190e-80 1.000000e+00
#> [5,] 4.284377e-34 1.000000e+00 8.485090e-66
#> [6,] 1.000000e+00 2.173042e-38 3.616880e-32
#> [7,] 1.000000e+00 1.657474e-39 2.486257e-44
#> [8,] 6.148468e-35 8.501740e-62 1.000000e+00
#> [9,] 1.000000e+00 1.584055e-36 7.734248e-39
#> [10,] 1.000000e+00 6.617151e-36 9.224399e-43
#> [11,] 3.419344e-38 1.000000e+00 2.743870e-70
#> [12,] 1.000000e+00 1.264228e-40 9.395923e-40
#> [13,] 1.000000e+00 1.785679e-25 3.020421e-45
#> [14,] 1.000000e+00 6.820067e-38 3.359919e-44
#> [15,] 1.000000e+00 3.624041e-34 7.734248e-39
#> [16,] 6.036227e-38 1.015713e-77 1.000000e+00
#> [17,] 1.000000e+00 1.226614e-38 2.922883e-34
#> [18,] 1.000000e+00 5.443069e-42 2.276597e-42
#> [19,] 1.000000e+00 9.928515e-25 6.952753e-40
#> [20,] 3.917168e-47 1.000000e+00 1.103522e-86
#> [21,] 1.435856e-43 1.121835e-89 1.000000e+00
#> [22,] 1.000000e+00 1.632631e-38 1.908825e-38
#> [23,] 1.000000e+00 2.076785e-35 2.486257e-44
#> [24,] 1.540415e-42 1.000000e+00 1.148294e-86
#> [25,] 1.000000e+00 6.324039e-33 1.908825e-38
#> [26,] 1.000000e+00 2.892333e-38 3.737577e-43
#> [27,] 1.000000e+00 7.029207e-40 4.023421e-31
#> [28,] 1.000000e+00 9.642821e-42 2.627545e-35
#> [29,] 1.000000e+00 9.498287e-41 4.540581e-44
#> [30,] 1.000000e+00 1.560312e-35 2.235037e-45
#> [31,] 1.789734e-33 1.000000e+00 5.903585e-80
#> [32,] 1.472181e-39 1.000000e+00 7.064422e-74
#> [33,] 1.000000e+00 1.322823e-43 2.405970e-33
#> [34,] 1.000000e+00 2.764215e-35 3.192063e-36
#> [35,] 1.000000e+00 1.024329e-45 4.313742e-36
#> [36,] 1.000000e+00 2.045657e-34 9.395923e-40
#> [37,] 1.000000e+00 3.463511e-31 5.144867e-40
#> [38,] 1.000000e+00 1.632631e-38 1.412484e-38
#> [39,] 1.000000e+00 5.201964e-39 8.446526e-41
#> [40,] 1.000000e+00 4.472796e-29 1.520508e-26
#> [41,] 1.000000e+00 1.632631e-38 1.944319e-35
#> [42,] 1.000000e+00 3.072441e-42 3.550854e-35
#> [43,] 1.000000e+00 2.848980e-37 7.734248e-39
#> [44,] 1.000000e+00 2.108388e-36 6.825829e-43
#> [45,] 1.000000e+00 2.108388e-36 2.154180e-51
#> [46,] 1.000000e+00 1.513888e-33 8.024552e-33
#> [47,] 1.000000e+00 6.617151e-36 1.600465e-34
#> [48,] 1.000000e+00 2.108388e-36 3.020421e-45
#> [49,] 1.000000e+00 1.120353e-32 7.213723e-34
#> [50,] 2.401133e-41 4.101858e-82 1.000000e+00
#> [51,] 1.000000e+00 1.103560e-31 7.734248e-39
#> [52,] 1.000000e+00 7.355002e-43 1.684626e-42
#> [53,] 1.000000e+00 5.695348e-45 8.446526e-41
#> [54,] 1.000000e+00 5.201964e-39 1.514405e-43
#> [55,] 1.000000e+00 4.897022e-35 1.571248e-37
#> [56,] 1.000000e+00 6.923847e-39 1.293372e-36
#> [57,] 1.000000e+00 6.617151e-36 1.341919e-30
#> [58,] 1.000000e+00 1.172280e-35 3.877866e-37
#> [59,] 5.426305e-39 3.757091e-77 1.000000e+00
#> [60,] 1.000000e+00 2.486910e-28 2.084616e-40
#> attr(,"class")
#> [1] "matrix" "posterior"
BSfrequent2015
contains simulated daily buys and sells for a
frequently traded equity for business days in 2015. qpin
returns
quarterly estimates which can be visualized with ggplot
.
# Quarterly PIN estimates
# Confidence interval computation enabled:
# * using only 1000 simulated datasets
# * confidence level set to 0.95
# * seed set to 123
data('BSfrequent2015')
qpin2015 <- qpin(numbuys = BSfrequent2015[,"Buys"], numsells = BSfrequent2015[,"Sells"],
dates = as.Date(rownames(BSfrequent2015), format = "%Y-%m-%d"),
confint = TRUE, ci_control = list(n = 1000, seed = 123))
# Print confidence intervals for all four quarters
ci_quarters <- lapply(qpin2015[["res"]], function(x) x$confint)
ci_quarters
#> $`2015.1`
#> 2.5% 97.5%
#> 0.02752256 0.05943952
#>
#> $`2015.2`
#> 2.5% 97.5%
#> 0.006405346 0.033145972
#>
#> $`2015.3`
#> 2.5% 97.5%
#> 0.03658681 0.07322781
#>
#> $`2015.4`
#> 2.5% 97.5%
#> 0.01014942 0.03794254
# Visualization of estimated parameters
library(ggplot2)
ggplot(qpin2015[["res"]])
Posterior probabilities of trading days’ condition are returned by
posterior
and can be displayed with ggplot
. The following code chunk
shows how posterior probabilities for BSfrequent2015
in the third
quarter can be calculated and visualized.
# Corresponding parameter estimates
freq_2015.3 <- qpin2015[["res"]]$'2015.3'$Results[,"Estimate"]
# Subsetting data
third_quarter <- subset(BSfrequent2015, subset = lubridate::quarter(rownames(BSfrequent2015)) == 3)
# Calculating posterior probabilities
post_third <- posterior(param = freq_2015.3,
numbuys = third_quarter[,"Buys"], numsells = third_quarter[,"Sells"])
# Plotting
ggplot(post_third)
You may install the stable version from CRAN, or the development version from GitHub using devtools:
# install from CRAN
install.packages("pinbasic")
# install from github using devtools
devtools::install_github("anre005/pinbasic")
install.packages('pinbasic')