## create an object of type \code{plmDE} containing disease with "control"
## and "disease" groups with measures of weight and severity. Then fit model:
ExpressionData = as.data.frame(matrix(abs(rnorm(10000, 1, 1.5)), ncol = 100))
names(ExpressionData) = sapply(1:100, function(x) paste("Sample", x))
Genes = sapply(1:100, function(x) paste("Gene", x))
DataInfo = data.frame(sample = names(ExpressionData), group = c(rep("Control", 50),
rep("Diseased", 50)), weight = abs(rnorm(100, 50, 20)), severity = c(rep(0, 50),
abs(rnorm(50, 100, 20))))
plmDEobject = plmDEmodel(Genes, ExpressionData, DataInfo)
model = fitGAPLM(plmDEobject, continuousCovariates.fullModel = c("weight", "severity"),
compareToReducedModel = TRUE, indicators.reducedModel = NULL,
continuousCovariates.reducedModel = "weight")
plot(model, "weight", 6, plmDEobject)
Run the code above in your browser using DataLab