data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
OLD_PLS_v2_vc(log(ypine),Xpine,4,typeVC="standard",modele="pls")$CVinfos
OLD_PLS_v2_vc(log(ypine),Xpine,4,typeVC="missingdata",modele="pls")$CVinfos
OLD_PLS_v2_vc(log(ypine),Xpine,4,typeVC="standard",modele="pls-glm-gaussian")$InfCrit
OLD_PLS_v2_vc(log(ypine),Xpine,4,typeVC="missingdata",modele="pls-glm-gaussian")$InfCrit
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
OLD_PLS_v2_vc(yaze_compl,Xaze_compl,10,modele="pls-glm-logistic",typeVC="none")$InfCrit
OLD_PLS_v2_vc(yaze_compl,Xaze_compl,10,modele="pls-glm-logistic",typeVC="standard")$InfCrit
OLD_PLS_v2_vc(yaze_compl,Xaze_compl,10,modele="pls-glm-logistic",typeVC="none",pvals.expli=TRUE)$valpvalstep
data(bordeaux)
Xbordeaux<-bordeaux[,1:4]
ybordeaux<-factor(bordeaux$Quality,ordered=TRUE)
OLD_PLS_v2_vc(as.numeric(ybordeaux),Xbordeaux,4,modele="pls",typeVC="standard")$CVinfos
OLD_PLS_v2_vc(ybordeaux,Xbordeaux,4,modele="pls-glm-polr",typeVC="none")$InfCrit
# plsR and gaussian plsRglm with missing data
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
cbind((log(ypine)),OLD_PLS_v2_vc(log(ypine),XpineNAX21,4,typeVC="none",modele="pls")$YChapeau,OLD_PLS_v2_vc(log(ypine),XpineNAX21,4,typeVC="none",modele="pls-glm-gaussian")$YChapeau)
cbind((log(ypine)),OLD_PLS_v2_vc(log(ypine),XpineNAX21,4,typeVC="none",modele="pls")$ValsPredictY,OLD_PLS_v2_vc(log(ypine),XpineNAX21,4,typeVC="none",modele="pls-glm-gaussian")$ValsPredictY)
rm("ypine","Xpine","XpineNAX21","yaze_compl","Xaze_compl","ybordeaux","Xbordeaux")
Run the code above in your browser using DataLab