data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_lm(yCornell,XCornell,10)$InfCrit
PLS_lm(yCornell,XCornell,10,typeVC="standard")$CVinfos
PLS_lm(yCornell,XCornell,6)$AIC
PLS_lm(yCornell,XCornell,6)$AIC.std
rm(list=c("XCornell","yCornell"))
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
modpls <- PLS_lm(yaze_compl,Xaze_compl,10,MClassed=TRUE)
modpls$AIC
modpls$AIC.std
modpls$MissClassed
modpls$Probs
modpls$Probs.trc
modpls$Probs-modpls$Probs.trc
modpls$InfCrit
PLS_lm(yaze_compl,Xaze_compl,10)$InfCrit
PLS_lm(yaze_compl,Xaze_compl,10,typeVC="standard")$CVinfos
PLS_lm(yaze_compl,Xaze_compl,10,typeVC="standard",MClassed=TRUE)$CVinfos
rm(list=c("Xaze_compl","yaze_compl","modpls"))
dimX <- 24
Astar <- 2
simul_data_UniYX(dimX,Astar)
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar2 <- dataAstar2[,1]
XdataAstar2 <- dataAstar2[,2:(dimX+1)]
ysimbin1 <- dicho(ydataAstar2)
Xsimbin1 <- dicho(XdataAstar2)
PLS_lm(ysimbin1,Xsimbin1,10,MClassed=TRUE)$Probs
PLS_lm(ysimbin1,Xsimbin1,10,MClassed=TRUE)$Probs.trc
PLS_lm(ysimbin1,Xsimbin1,10,MClassed=TRUE)$MissClassed
PLS_lm(ysimbin1,Xsimbin1,10,typeVC="standard",MClassed=TRUE)$CVinfos
PLS_lm(ysimbin1,XdataAstar2,10,typeVC="standard",MClassed=TRUE)$CVinfos
PLS_lm(ydataAstar2,XdataAstar2,10,typeVC="standard")$CVinfos
rm(list=c("dimX","Astar","dataAstar2","ysimbin1","Xsimbin1","ydataAstar2","XdataAstar2"))
dimX <- 6
Astar <- 4
dataAstar4 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar4 <- dataAstar4[,1]
XdataAstar4 <- dataAstar4[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar4,XdataAstar4,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
str(modpls)
rm(list=c("dimX","Astar","dataAstar4","modpls","ydataAstar4","XdataAstar4"))
dimX <- 24
Astar <- 2
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar2 <- dataAstar2[,1]
XdataAstar2 <- dataAstar2[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar2,XdataAstar2,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar2","modpls","ydataAstar2","XdataAstar2"))
# Comparing the results with the plspm package and SIMCA results in Tenenhaus's book
library(plspm)
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
plsreg1(x=XCornell,y=as.vector(yCornell),nc=3)$coeffs
PLS_lm(yCornell,XCornell,3)$uscores
PLS_lm(yCornell,XCornell,3)$pp
PLS_lm(yCornell,XCornell,3)$Coeffs
plsreg1(x=XCornell,y=as.vector(yCornell),nc=4,cv=TRUE)
PLS_lm(yCornell,XCornell,4,typeVC="standard")$press.ind
PLS_lm(yCornell,XCornell,4,typeVC="standard")$press.tot
PLS_lm(yCornell,XCornell,4,typeVC="standard")$CVinfos
plsreg1(x=XCornell,y=as.vector(yCornell),nc=4,cv=TRUE)$Q2
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
PLS_lm(log(ypine),Xpine,4)$Std.Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4)$std.coef
PLS_lm(log(ypine),Xpine,4)$Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4)$coeffs
PLS_lm(log(ypine),Xpine,1)$Std.Coeffs
PLS_lm(log(ypine),Xpine,1)$Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=10)$Q2
PLS_lm(log(ypine),Xpine,10,typeVC="standard")$CVinfos
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4,cv=TRUE)$Q2
data(pine_full)
Xpine_full<-pine_full[,1:10]
ypine_full<-pine_full[,11]
PLS_lm(log(ypine_full),Xpine_full,1)$Std.Coeffs
PLS_lm(log(ypine_full),Xpine_full,1)$Coeffs
plsreg1(x=Xpine_full,y=log(as.vector(ypine_full)),nc=4)$coeffs
cor(cbind(Xpine,log(ypine)))
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
PLS_lm(log(ypine),XpineNAX21,4)$Std.Coeffs
PLS_lm(log(ypine),XpineNAX21,4)$YChapeau[1,]
PLS_lm(log(ypine),Xpine,4)$YChapeau[1,]
PLS_lm(log(ypine),XpineNAX21,4)$CoeffC
plsreg1(x=XpineNAX21,y=as.vector(log(ypine)),nc=4,cv=TRUE)
PLS_lm(log(ypine),XpineNAX21,2,dataPredictY=XpineNAX21[1,])$ValsPredictY
PLS_lm(log(ypine),Xpine,10,typeVC="none")$InfCrit
PLS_lm(log(ypine),Xpine,10,typeVC="standard")$CVinfos
PLS_lm(log(ypine),Xpine,10,typeVC="adaptative")$CVinfos
PLS_lm(log(ypine),Xpine,10,typeVC="missingdata")$CVinfos
PLS_lm(log(ypine),XpineNAX21,10,typeVC="none")$InfCrit
PLS_lm(log(ypine),XpineNAX21,10,typeVC="standard")$CVinfos
PLS_lm(log(ypine),XpineNAX21,10,typeVC="adaptative")$CVinfos
PLS_lm(log(ypine),XpineNAX21,10,typeVC="missingdata")$CVinfos
PLS_lm(log(ypine),XpineNAX21,4,EstimXNA=TRUE)$XChapeau
PLS_lm(log(ypine),XpineNAX21,4,EstimXNA=TRUE)$XChapeauNA
rm(list=c("XCornell","yCornell","Xpine","ypine","Xpine_full","ypine_full","XpineNAX21"))
dimX <- 24
Astar <- 3
dataAstar3 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar3 <- dataAstar3[,1]
XdataAstar3 <- dataAstar3[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar3,XdataAstar3,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar3","modpls","ydataAstar3","XdataAstar3"))
dimX <- 24
Astar <- 4
dataAstar4 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar4 <- dataAstar4[,1]
XdataAstar4 <- dataAstar4[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar4,XdataAstar4,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar4","modpls","ydataAstar4","XdataAstar4"))
dimX <- 24
Astar <- 5
dataAstar5 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar5 <- dataAstar5[,1]
XdataAstar5 <- dataAstar5[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar5,XdataAstar5,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar5","modpls","ydataAstar5","XdataAstar5"))
dimX <- 24
Astar <- 6
dataAstar6 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar6 <- dataAstar6[,1]
XdataAstar6 <- dataAstar6[,2:(dimX+1)]
modpls <- PLS_lm(ydataAstar3,XdataAstar6,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar6","modpls","ydataAstar6","XdataAstar6"))
Run the code above in your browser using DataLab