data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- PLS_glm_kfoldcv(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),nt=6,K=12,NK=1,keepfolds=FALSE,keepdataY=TRUE,modele="pls")
kfolds2CVinfos_glm(bbb)
rm(list=c("XCornell","yCornell","bbb"))
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- PLS_glm_kfoldcv(yaze_compl,Xaze_compl,nt=10,K=12,NK=1,keepfolds=FALSE,keepdataY=TRUE,modele="pls")
kfolds2CVinfos_glm(bbb,MClassed=TRUE)
bbb2 <- PLS_glm_kfoldcv(yaze_compl,Xaze_compl,nt=10,K=12,NK=1,keepfolds=FALSE,keepdataY=TRUE,modele="pls-glm-logistic")
kfolds2CVinfos_glm(bbb2,MClassed=TRUE)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))
#install.packages("chemometrics")
library(chemometrics)
data(hyptis)
hyptis
yhyptis <- factor(hyptis$Group,ordered=TRUE)
Xhyptis <- as.data.frame(hyptis[,c(1:6)])
options(contrasts = c("contr.treatment", "contr.poly"))
modpls2 <- plsRglm(yhyptis,Xhyptis,6,modele="pls-glm-polr")
modpls2$Coeffsmodel_vals
modpls2$InfCrit
modpls2$Coeffs
modpls2$std.coeffs
table(yhyptis,predict(modpls2$FinalModel,type="class"))
modpls3 <- PLS_glm(yhyptis[-c(1,2,3)],Xhyptis[-c(1,2,3),],3,modele="pls-glm-polr",dataPredictY=Xhyptis[c(1,2,3),])
bbb <- PLS_glm_kfoldcv(yhyptis,Xhyptis,nt=4,K=10,random=TRUE,modele="pls-glm-polr",keepcoeffs=T)
kfolds2CVinfos_v2(bbb,MClassed=TRUE)
Run the code above in your browser using DataLab