Learn R Programming

plsRglm (version 0.3.3)

kfolds2CVinfos_v1: Extracts and computes information criteria and fits statistics for kfold cross validated partial least squares models

Description

This function extracts and computes information criteria and fits statistics for kfold cross validated partial least squares models.

Usage

kfolds2CVinfos_v1(pls_kfolds, MClassed = FALSE)

Arguments

pls_kfolds
an object computed using PLS_v1_kfoldcv
MClassed
should number of miss classed be computed

Value

  • listtable of fit statistics for first group partition
  • ......
  • listtable of fit statistics for last group partition

Details

The Mclassed option should only set to TRUE if the response is binary.

References

Nicolas Meyer, Myriam Maumy-Bertrand et Fr�d�ric{Fr'ed'eric} Bertrand (2010). Comparaison de la r�gression{r'egression} PLS et de la r�gression{r'egression} logistique PLS : application aux donn�es{donn'ees} d'all�lotypage{d'all'elotypage}. Journal de la Soci�t� Fran�aise de Statistique, 151(2), pages 1-18. http://smf4.emath.fr/Publications/JSFdS/151_2/pdf/sfds_jsfds_151_2_1-18.pdf

See Also

kfolds2coeff, kfolds2Pressind, kfolds2Press, kfolds2Mclassedind and kfolds2Mclassed to extract and transforms results from kfold cross validation.

Examples

Run this code
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- PLS_v1_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,keepcoeffs=TRUE)
kfolds2CVinfos_v1(bbb)
kfolds2CVinfos_v1(bbb,MClassed=TRUE)
bbb <- PLS_v1_kfoldcv(dataY=yCornell,dataX=XCornell,nt=10,keepcoeffs=TRUE)
kfolds2CVinfos_v1(bbb)
kfolds2CVinfos_v1(bbb,MClassed=TRUE)
rm(list=c("XCornell","yCornell","bbb"))


data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbb <- PLS_v1_kfoldcv(dataY=log(ypine),dataX=Xpine,nt=10,K=12,NK=3,keepfolds=FALSE,keepdataY=TRUE)
kfolds2CVinfos_v1(bbb)
bbb2 <- PLS_v1_kfoldcv(dataY=log(ypine),dataX=XpineNAX21,nt=10,K=12,NK=3,random=TRUE,keepfolds=FALSE,keepdataY=TRUE)
kfolds2CVinfos_v1(bbb2)
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2"))


data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- PLS_v1_kfoldcv(yaze_compl,Xaze_compl,nt=10,K=12,NK=3,keepdataY=TRUE)
kfolds2CVinfos_v1(bbb)
kfolds2CVinfos_v1(bbb,MClassed=TRUE)
rm(list=c("Xaze_compl","yaze_compl","bbb"))

Run the code above in your browser using DataLab