data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- PLS_glm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=16)
bbb2 <- PLS_glm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=5)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
rm(list=c("XCornell","yCornell","bbb","bbb2"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- PLS_glm_kfoldcv(dataY=ypine,dataX=Xpine,nt=4,modele="pls-glm-gaussian")
bbb2 <- PLS_glm_kfoldcv(dataY=ypine,dataX=Xpine,nt=10,modele="pls-glm-gaussian",K=10)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- PLS_glm_kfoldcv(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls",K=10)
kfolds2Press(bbbNA)
kfolds2Chisq(bbbNA)
bbbNA2 <- PLS_glm_kfoldcv(dataY=ypine,dataX=XpineNAX21,nt=4,modele="pls-glm-gaussian")
bbbNA3 <- PLS_glm_kfoldcv(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls-glm-gaussian",K=10)
kfolds2Chisq(bbbNA2)
kfolds2Chisq(bbbNA3)
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2","bbbNA3"))
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- PLS_glm_kfoldcv(dataY=yaze_compl,dataX=Xaze_compl,nt=4,modele="pls-glm-logistic")
bbb2 <- PLS_glm_kfoldcv(dataY=yaze_compl,dataX=Xaze_compl,nt=10,modele="pls-glm-logistic",K=10)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))
Run the code above in your browser using DataLab