Learn R Programming

polySegratioMM (version 0.6-3)

setModel: Set characteristics of the Bayesian mixture model for dosages

Description

Used to automatically set up Bayesian finite mixture models for dosage allocation of dominant markers in autopolyploids given the number of components and ploidy level

Usage

setModel(n.components, ploidy.level, random.effect = FALSE, seg.ratios =NULL, ploidy.name = NULL, equal.variances=TRUE, type.parents = c("heterogeneous", "homozygous"))

Arguments

n.components
number of components for mixture model (less than or equal to maximum number of possible dosages)
ploidy.level
the number of homologous chromosomes, either as numeric or as a character string
random.effect
Logical indicating whether model contains random effect (Default: FALSE)
seg.ratios
segregation proportions for each marker provided as S3 class segRatio
ploidy.name
Can overide ploidy name here or allow it to be determined from ploidy.level
equal.variances
Logical indicating whether model contains separate or common variances for each component (Default: TRUE)
type.parents
"heterogeneous" if parental markers are 0,1 or "homogeneous" if parental markers are both 1

Value

Returns object of class modelSegratioMM with components
bugs.code
text to be used by JAGS in the .bug file but without statements pertaining to priors
n.components
number of components for mixture model
monitor.var
names of variables to be monitored in JAGS run
ploidy.level
ploidy level
random.effect
Logical indicating whether model contains random effect (Default: FALSE)
equal.variances
Logical indicating equal or separate variances for each component
E.segRatio
Expected segregation ratios
type.parents
"heterogeneous" if parental markers are 0,1 or "homogeneous" if parental markers are both 1
call
function call

See Also

setPriors setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

Examples

Run this code
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)

## set up model with 3 components
x <- setModel(3,8)
print(x)

Run the code above in your browser using DataLab