Learn R Programming

provenance (version 0.2)

indscal: Individual Differences Scaling of provenance data

Description

Performs 3-way Multidimensional Scaling analysis using Carroll and Chang (1970)'s INdividual Differences SCALing method as implemented using De Leeuw and Mair (2011)'s stress majorization algorithm.

Usage

indscal(..., type = "ordinal")

Arguments

...
a sequence of datasets of class DZdata or HMdata
type
is either "ratio", "interval", or "ordinal"

Value

  • an object of class INDSCAL, i.e. a list containing the following items:

    delta: Observed dissimilarities

    obsdiss: List of observed dissimilarities, normalized

    confdiss: List of configuration dissimilarities

    conf: List of matrices of final configurations

    gspace: Joint configurations aka group stimulus space

    cweights: Configuration weights

    stress: Stress-1 value

    spp: Stress per point

    sps: Stress per subject (matrix)

    ndim: Number of dimensions

    model: Type of smacof model

    niter: Number of iterations

    nobj: Number of objects

References

de Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, < http://www.jstatsoft.org/v31/i03/>

Examples

Run this code
DZ <- read.DZdata(system.file("DZ.csv",package="provenance"))
HM <- read.HMdata(system.file("HM.csv",package="provenance"))
plot(indscal(DZ,HM))

Run the code above in your browser using DataLab