Learn R Programming

provenance (version 0.2)

procrustes: Generalised Procrustes Analysis (GPA)

Description

Given a number of input datasets, this function performs an MDS analysis on each of these and the feeds the resulting configurations into a GPA algorithm, which uses a combination of transformations (reflections, rotations, translations and scaling) to find a 'consensus' configuration which best matches all the component configurations in a least-squares sense.

Usage

procrustes(...)

Arguments

...
a sequence of datasets of classes DZdata and HMdata

Value

  • an object of class GPA, i.e. a list containing the following items:

    points: a two column vector with the coordinates of the group configuration

    labels: a list with the sample names

References

Dryden, Ian, and Maintainer Ian Dryden. "Shapes package." Vienna, Austria: R Foundation for Statistical Computing (2012).

Examples

Run this code
DZ <- read.DZdata(system.file("DZ.csv",package="provenance"))
HM <- read.HMdata(system.file("HM.csv",package="provenance"))
GPA <- procrustes(DZ,HM)
plot(GPA)

Run the code above in your browser using DataLab