Learn R Programming

qtl (version 1.38-4)

mqmfind.marker: Fetch significant markers after permutation analysis

Description

Fetch significant makers after permutation analysis. These markers can be used as cofactors for model selection in a forward stepwise approach.

Usage

mqmfind.marker(cross, mqmscan = NULL, perm = NULL, alpha = 0.05, verbose=FALSE)

Arguments

cross
An object of class cross. See read.cross for details.
mqmscan
Results from either scanone or mqmscan
perm
a scanoneperm object
alpha
Threshold value, everything with significance < alpha is reported
verbose
Display more output on verbose=TRUE

Value

  • returns a matrix with at each row a significant marker (determined from the scanoneperm object) and with columns: markername, chr and pos (cM)

See Also

  • mqmprocesspermutation- Function called to convert results from an mqmpermutation into an scanoneperm object % \input{"inst/docs/Sources/MQM/mqm/standard_seealso.txt"}
  • The MQM tutorial:http://www.rqtl.org/tutorials/MQM-tour.pdf
  • MQM- MQM description and references
  • mqmscan- Main MQM single trait analysis
  • mqmscanall- Parallellized traits analysis
  • mqmaugment- Augmentation routine for estimating missing data
  • mqmautocofactors- Set cofactors using marker density
  • mqmsetcofactors- Set cofactors at fixed locations
  • mqmpermutation- Estimate significance levels
  • scanone- Single QTL scanning % -----^^ inst/docs/Sources/MQM/mqm/standard_seealso.txt ^^-----

Examples

Run this code
# Use the multitrait dataset
data(multitrait)

# Set cofactors at each 3th marker
cof <- mqmsetcofactors(multitrait,3)

# impute missing genotypes
multitrait <- fill.geno(multitrait)

# log transform the 7th phenotype
multitrait <- transformPheno(multitrait, 7)

# Bootstrap 50 runs in batches of 10
result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
                         pheno.col=7,n.perm=50,batchsize=10)result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
                         pheno.col=7,n.perm=2,batchsize=2)

# Create a permutation object
f2perm <- mqmprocesspermutation(result)

# What LOD score is considered significant ?
summary(f2perm)

# Find markers with a significant QTL effect (First run is original phenotype data)
marker <- mqmfind.marker(multitrait,result[[1]],f2perm)

# Print it to the screen
marker

Run the code above in your browser using DataLab