Learn R Programming

qtlmt (version 0.1-1)

mtcmimStep: MTCMIM model selection

Description

Model selection for multiple-trait composite multiple-interval mapping.

Usage

mtcmimAdd1(obj, y, x, xid, mpos, mdat, pp=1, len=1, type=1,
   iter=2500, tol=1e-8, ext=FALSE)

mtcmimDrop1(obj, y, x, xid, mpos, mdat, pp=1, len=1, type=1,
   iter=2500, tol=1e-8, ext=FALSE)

mtcmimStep(obj, y, x, xid, mpos, mdat, cv=0,
   direction=c("both", "backward", "forward"), pp=1, len=1,
   type=1, iter=2500, tol=1e-8, ext=FALSE)

Arguments

obj
object of class mtcmim.
y
n by p matrix, whose columns are dependent variables.
x
covariates; n by m numerical matrix.
xid
list of length p; xid[[j]] specifies columns of x as covariates for y[,j] .
mpos
data frame (id=marker index, ch=chromosome id, m=marker index on the chromosome, dist=genetic position in cM on the chromosome). Chromosome id should be an integer.
mdat
matrix of n rows; marker genotypes (1 or 0). columns should correspond to markers in the order.
pp
mapping population: BC-1, RIL-selfing-2, RIL-brother-sister-mating-3.
len
step length in search.
type
1 if traits can have the different sets of covariates and QTL, 2 if all have the same set of covariates and QTL.
ext
whether to perform an extensive search.
cv
critical value used in the likelihood ratio test to determine adding/dropping a QTL.
direction
forward selection, backward elimination or both directions.
iter
maximum number of iterations in a numerical process to estimate model parameters.
tol
convergence tolerance.

Value

  • a list with the following components:
  • loglik:log-likelihood of the final model
  • a:covariate effects
  • b:QTL effects
  • sigma:residual variance-covariance
  • qtl:QTL for each trait
  • dists:QTL locations

See Also

mtcmim

Examples

Run this code
data(etrait)
y<- traits[,1:5]
qtl<- vector("list",5); qtl[[1]]<- c(1,2)
eps<- data.frame(y=1,q1=1,q2=2)
dists<- dists[c(4,11),]
x<- mdat - 3/2
o<- mtcmim(y,mpos,mdat,dists=dists,
   qtl=qtl,eps=eps,win=5,range=-1,pp=2,len=1)
of<- mtcmimAdd1(o,y=y,mpos=mpos,mdat=mdat,pp=2,len=3)
os<- mtcmimStep(of,y=y,mpos=mpos,mdat=mdat,cv=25,
   direction="both",pp=2,len=3)

Run the code above in your browser using DataLab