Learn R Programming

⚠️There's a newer version (4.2.0) of this package.Take me there.

About

An R package for managing and analyzing text, created by Kenneth Benoit. Supported by the European Research Council grant ERC-2011-StG 283794-QUANTESS.

For more details, see https://quanteda.io.

How to Install

The normal way from CRAN, using your R GUI or

install.packages("quanteda") 

Or for the latest development version:

# devtools package required to install quanteda from Github 
devtools::install_github("quanteda/quanteda") 

Because this compiles some C++ and Fortran source code, you will need to have installed the appropriate compilers.

If you are using a Windows platform, this means you will need also to install the Rtools software available from CRAN.

If you are using macOS, you should install the macOS tools, namely the Clang 6.x compiler and the GNU Fortran compiler (as quanteda requires gfortran to build). If you are still getting errors related to gfortran, follow the fixes here.

How to Use

See the quick start guide to learn how to use quanteda.

How to cite

Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller, and Akitaka Matsuo. (2018) “quanteda: An R package for the quantitative analysis of textual data”. Journal of Open Source Software. 3(30), 774. https://doi.org/10.21105/joss.00774.

For a BibTeX entry, use the output from citation(package = "quanteda").

Leaving Feedback

If you like quanteda, please consider leaving feedback or a testimonial here.

Contributing

Contributions in the form of feedback, comments, code, and bug reports are most welcome. How to contribute:

Copy Link

Version

Install

install.packages('quanteda')

Monthly Downloads

24,111

Version

1.4.3

License

GPL-3

Maintainer

Kenneth Benoit

Last Published

April 1st, 2019

Functions in quanteda (1.4.3)

convert-wrappers

Convenience wrappers for dfm convert
data_char_ukimmig2010

Immigration-related sections of 2010 UK party manifestos
data_corpus_dailnoconf1991

Confidence debate from 1991 Irish Parliament
as.corpus.corpuszip

Coerce a compressed corpus to a standard corpus
dfm_trim

Trim a dfm using frequency threshold-based feature selection
dfm_weight

Weight the feature frequencies in a dfm
docfreq

Compute the (weighted) document frequency of a feature
as.data.frame.dfm

Convert a dfm to a data.frame
as.network

redefinition of network::as.network()
as.dfm

Coercion and checking functions for dfm objects
docnames

Get or set document names
as.dictionary

Coercion and checking functions for dictionary objects
as.statistics_textmodel

Coerce various objects to statistics_textmodel
as.summary.textmodel

Assign the summary.textmodel class to a list
coef.textmodel_ca

Extract model coefficients from a fitted textmodel_ca object
compute_lexdiv_stats

Compute lexical diversity from a dfm or tokens
as.tokens

Coercion, checking, and combining functions for tokens objects
ndoc

Count the number of documents or features
compute_mattr

Compute the Moving-Average Type-Token Ratio (MATTR)
corpus_reshape

Recast the document units of a corpus
nest_dictionary

Utility function to generate a nested list
corpus_sample

Randomly sample documents from a corpus
compute_msttr

Compute the Mean Segmental Type-Token Ratio (MSTTR)
phrase

Declare a compound character to be a sequence of separate pattern matches
predict.textmodel_affinity

Prediction for a fitted affinity textmodel
data-internal

Internal data sets
data_corpus_inaugural

US presidential inaugural address texts
read_dict_lexicoder

Import a Lexicoder dictionary
data_char_sampletext

A paragraph of text for testing various text-based functions
data_corpus_irishbudget2010

Irish budget speeches from 2010
read_dict_liwc

Import a LIWC-formatted dictionary
dfm_lookup

Apply a dictionary to a dfm
as.coefficients_textmodel

Coerce various objects to coefficients_textmodel This is a helper function used in summary.textmodel_*.
dfm_match

Match the feature set of a dfm to given feature names
as.corpus

coerce a compressed corpus to a standard corpus
dfm_tfidf

Weight a dfm by tf-idf
View

View methods for quanteda
as.igraph

Convert an fcm to an igraph object
affinity

Internal function to fit the likelihood scaling mixture model.
as.matrix.dist_selection

Coerce a dist_selection object to a matrix
settings

Get or set the corpus settings
slots<-

Function to assign multiple slots to a S4 object
as.matrix.simil

Coerce a simil object into a matrix
dfm_tolower

Convert the case of the features of a dfm and combine
fcm

Create a feature co-occurrence matrix
dfm_compress

Recombine a dfm or fcm by combining identical dimension elements
fcm_sort

Sort an fcm in alphabetical order of the features
textmodel_affinity-internal

Internal methods for textmodel_affinity
as.yaml

Convert quanteda dictionary objects to the YAML format
textmodel_affinity

Class affinity maximum likelihood text scaling model
dfm_group

Combine documents in a dfm by a grouping variable
attributes<-

Function extending base::attributes()
as.list.dist

Coerce a dist object into a list
generate_groups

Generate a grouping vector from docvars
groups

Grouping variable(s) for various functions
metacorpus

Get or set corpus metadata
dictionary2-class

Coerce a dictionary object into a list
corpus

Construct a corpus object
textmodel_wordfish

Wordfish text model
as.dist.dist

Coerce a dist into a dist
as.fcm

Coercion functions for fcm objects
textmodel_wordscores

Wordscores text model
as.matrix.dfm

Coerce a dfm to a matrix or data.frame
corpus-class

Base method extensions for corpus objects
as.list.dist_selection

Coerce a dist_selection object into a list
dictionary

Create a dictionary
head.corpus

Return the first or last part of a corpus
metadoc

Get or set document-level meta-data
textplot_scale1d

Plot a fitted scaling model
data_dfm_lbgexample

dfm from data in Table 1 of Laver, Benoit, and Garry (2003)
char_tolower

Convert the case of character objects
head.dfm

Return the first or last part of a dfm
corpus_trimsentences

Remove sentences based on their token lengths or a pattern match
check_font

Check if font is available on the system
corpus_trim

Remove sentences based on their token lengths or a pattern match
bootstrap_dfm

Bootstrap a dfm
keyness

Compute keyness (internal functions)
kwic

Locate keywords-in-context
ntoken

Count the number of tokens or types
dfm

Create a document-feature matrix
data_dictionary_LSD2015

Lexicoder Sentiment Dictionary (2015)
textplot_wordcloud

Plot features as a wordcloud
pattern

Pattern for feature, token and keyword matching
tokens_select

Select or remove tokens from a tokens object
dfm2lsa

Convert a dfm to an lsa "textmatrix"
dfm_split_hyphenated_features

Split a dfm's hyphenated features into constituent parts
cbind.dfm

Combine dfm objects by Rows or Columns
tokens_serialize

Function to serialized list-of-character tokens
dfm_subset

Extract a subset of a dfm
reexports

Objects exported from other packages
create

Utility function to create a object with new set of attributes
types

Get word types from a tokens object
remove_empty_keys

Utility function to remove empty keys
corpus_segment

Segment texts on a pattern match
scrabble

Deprecated name for nscrabble
corpus_subset

Extract a subset of a corpus
data-deprecated

Datasets with deprecated or defunct names
expand

Simpler and faster version of expand.grid() in base package
dfm_replace

Replace features in dfm
dfm_sample

Randomly sample documents or features from a dfm
dfm_select

Select features from a dfm or fcm
influence.predict.textmodel_affinity

Compute feature influence from a predicted textmodel_affinity object
fcm-class

dfm_sort

Sort a dfm by frequency of one or more margins
search_glob

Select types without performing slow regex search
dfm-class

Virtual class "dfm" for a document-feature matrix
is_glob

Check if patterns contains glob wildcard
escape_regex

Internal function for select_types() to escape regular expressions
docvars

Get or set document-level variables
dfm-internal

Internal functions for dfm objects
merge_dictionary_values

Internal function to merge values of duplicated keys
is_indexed

Check if a glob pattern is indexed by index_types
featnames

Get the feature labels from a dfm
nsentence

Count the number of sentences
unused_dots

Raise warning of unused dots
is_regex

Internal function for select_types() to check if a string is a regular expression
flatten_dictionary

Flatten a hierarchical dictionary into a list of character vectors
message_error

Return an error message
nscrabble

Count the Scrabble letter values of text
format_sparsity

format a sparsity value for printing
nfeature

Defunct form of nfeat
predict.textmodel_nb

Prediction from a fitted textmodel_nb object
friendly_class_undefined_message

Print friendly object class not defined message
nsyllable

Count syllables in a text
predict.textmodel_wordfish

Prediction from a textmodel_wordfish method
list2dictionary

Internal function to convert a list to a dictionary
quanteda-package

An R package for the quantitative analysis of textual data
quanteda_options

Get or set package options for quanteda
matrix2dfm

Converts a Matrix to a dfm
print.dfm

Print a dfm object
replace_dictionary_values

Internal function to replace dictionary values
matrix2fcm

Converts a Matrix to a fcm
lowercase_dictionary_values

Internal function to lowercase dictionary values
sample_bygroup

Sample a vector by a group
spacyr-methods

Extensions for and from spacy_parse objects
summary.textmodel_wordfish

summary method for textmodel_wordfish
textmodel_nb

Naive Bayes classifier for texts
textstat_lexdiv

Calculate lexical diversity
sparsity

Compute the sparsity of a document-feature matrix
tokens

Tokenize a set of texts
tokens_split

Split tokens by a separator pattern
textmodel_lsa

Latent Semantic Analysis
textstat_proxy

[Experimental] Compute document/feature proximity
tokens_chunk

Segment tokens object by chunks of a given size
tokens_subset

Extract a subset of a tokens
summary_character

Summary statistics on a character vector
print.phrases

Print a phrase object
print.statistics_textmodel

Implements print methods for textmodel_statistics
read_dict_wordstat

Import a Wordstat dictionary
print.dist_selection

Print a dist_selection object
print.summary.textmodel

print method for summary.textmodel
wordcloud

Internal function for textplot_wordcloud
valuetype

Pattern matching using valuetype
print.textmodel_wordfish

print method for a wordfish model
read_dict_yoshikoder

Import a Yoshikoder dictionary file.
textstat_collocations

Identify and score multi-word expressions
textstat_entropy

Compute entropy of documents or features
tf

deprecated name for dfm_weight
tfidf

pattern2id

Convert regex and glob patterns to type IDs or fixed patterns
tokens_recompile

recompile a serialized tokens object
pattern2list

Convert various input as pattern to a vector used in tokens_select, tokens_compound and kwic.
predict.textmodel_wordscores

Predict textmodel_wordscores
split_values

Internal function for special handling of multi-word dictionary values
print.coefficients_textmodel

Print methods for textmodel features estimates This is a helper function used in print.summary.textmodel.
summary.character

summary.character method to override the network::summary.character()
textplot_keyness

Plot word keyness
set_dfm_slots

Set values to a dfm's S4 slots
textplot_network

Plot a network of feature co-occurrences
search_index

Internal function for select_types to search the index using fastmatch.
tokens_replace

Replace tokens in a tokens object
set_fcm_slots

Set values to a fcm's S4 slots
textmodel_wordshoal

Wordshoal text model (redirect)
textplot_influence

Influence plot for text scaling models
wordcloud_comparison

Internal function for textplot_wordcloud
tokens_compound

Convert token sequences into compound tokens
set_dfm_dimnames<-

Internal functions to set dimnames
summary.corpus

Summarize a corpus
textplot_xray

Plot the dispersion of key word(s)
summary.textmodel_nb

summary method for textmodel_nb objects
texts

Get or assign corpus texts
textmodel_ca

Correspondence analysis of a document-feature matrix
tokens_wordstem

Stem the terms in an object
tokens_group

Recombine documents tokens by groups
topfeatures

Identify the most frequent features in a dfm
textstat_simil

Similarity and distance computation between documents or features
textmodel_lsa-postestimation

Post-estimations methods for textmodel_lsa
textstat_dist_old

Similarity and distance computation between documents or features
tokens_sample

Randomly sample documents from a tokens object
textstat_frequency

Tabulate feature frequencies
tokens_segment

Segment tokens object by patterns
textstat_keyness

Calculate keyness statistics
textstat_readability

Calculate readability
textstat_select

Select rows of textstat objects by glob, regex or fixed patterns
tokens_lookup

Apply a dictionary to a tokens object
tokens_ngrams

Create ngrams and skipgrams from tokens
tokens_tolower

Convert the case of tokens
tokens_tortl

[Experimental] Change direction of words in tokens
convert

Convert a dfm to a non-quanteda format