quantro(object, groupFactor = NULL, B = 0, qRange = NULL,
useMedianNormalized = TRUE, verbose = TRUE)eSet such as an ExpressionSet or
MethylSet object. The object can also be a
data frame or matrix with observations
(e.g. probes or genes) on the rows and samples as the
columns.object. The order of the
groupFactor must match the order of the columns in
object.B=0.seq(0, 1, length.out = nrow(object)).quantro S4 class objectB is not equal to 0, then a permutation
test was performed to assess the statistical significance of quantroStat.
These are the test statistics resulting from the permuted samples.B is not equal to 0, then this is the
p-value associated with the proportion of times the test statistics
resulting from the permuted samples were larger than quantroStat.This function can be used to test a priori to the data analysis whether
global normalization methods such as quantile normalization should be
applied. The quantro function uses the raw unprocessed high-throughput
data to test for global differences in the distributions across a set of groups.
The quantro function will perform two tests:
1. An ANOVA to test if the medians of the distributions are different across groups. Differences across groups could be attributed to unwanted technical variation (such as batch effects) or real global biological variation. This is a helpful step for the user to verify if there is some unaccounted technical variation.
2. A test for global differences between the distributions across groups.
The main output is a test statistic called quantroStat. This test
statistic is a ratio of two variances and is similar to the idea of ANOVA.
The main idea of the test is to compare the variability of distributions
within the groups to the variability of distributions between the groups.
If the variance between the groups is sufficiently larger than the variance
within the groups, quantile normalization may not be an appropriate
normalization technique depending on the source of variation
(technical or biological variation). As a default, we perform this test on
after a median normalization, but this option may be changed.
To assess the statistical significance of quantroStat, we use
permutation testing. To perform a permutation test, set B to the
number of permutations which will create a null distribution. If the number
of samples is large, this number can be a large number such as 1000. This
step can be very slow, but a parallelization has been implemented
throught the foreach package. Register the number of cores using
the doParallel package.
See the vignette for more details.
library(minfi)
data(flowSorted)
p <- getBeta(flowSorted, offset = 100)
pd <- pData(flowSorted)
qtest <- quantro(object = p, groupFactor = pd$CellType)Run the code above in your browser using DataLab