Usage
af_old(X, argvals = seq(0, 1, l = ncol(X)), xind = NULL,
basistype = c("te", "t2", "s"), integration = c("simpson", "trapezoidal",
"riemann"), L = NULL, splinepars = list(bs = "ps", k =
c(min(ceiling(nrow(X)/5), 20), min(ceiling(ncol(X)/5), 20)), m = list(c(2, 2),
c(2, 2))), presmooth = TRUE, Xrange = range(X), Qtransform = FALSE)
Arguments
X
an N
by J=ncol(argvals)
matrix of function evaluations
$X_i(t_{i1}),., X_i(t_{iJ}); i=1,.,N.$
argvals
matrix (or vector) of indices of evaluations of $X_i(t)$; i.e. a matrix with
ith row $(t_{i1},.,t_{iJ})$
xind
Same as argvals. It will discard this argument in the next version of refund.
basistype
defaults to "te"
, i.e. a tensor product spline to represent $F(x,t)$ Alternatively,
use "s"
for bivariate basis functions (see s
) or "t2"
for an alternative
parameterizati integration
method used for numerical integration. Defaults to "simpson"
's rule for
calculating entries in L
. Alternatively and for non-equidistant grids, "trapezoidal"
or "riemann"
. "riemann"
integra
L
optional weight matrix for the linear functional
splinepars
optional arguments specifying options for representing and penalizing the
function $F(x,t)$. Defaults to a cubic tensor product B-spline with marginal second-order
difference penalties, i.e. list(bs="ps", m=list(c(2, 2), c(2, 2))
, see
presmooth
logical; if true, the functional predictor is pre-smoothed prior to fitting; see
smooth.basisPar
Xrange
numeric; range to use when specifying the marginal basis for the x-axis. It may
be desired to increase this slightly over the default of range(X)
if concerned about predicting
for future observed curves that take values outside of
Qtransform
logical; should the functional be transformed using the empirical cdf and
applying a quantile transformation on each column of X
prior to fitting? This ensures
Xrange=c(0,1)
. If Qtransform=TRUE
and presmoot