Compute a robust estimate of location and scatter using an orthogonalized pairwise estimator.
Usage
fastcov(x, control)
Arguments
x
a numeric matrix containing the data.
control
a list of control parameters. The utility function covRob.control creates a list of the control parameters and their default values. See details for the required control parameters and their default values.
Value
a list with the following components:
callan image of the call that produced the object with all the arguments named.
cova numeric matrix containing the Stahel-Donoho estimate of the covariance/correlation matrix.
centera numeric vector containing the Stahel-Donoho estimate of the location vector.
raw.cova numeric matrix containing the initial robust estimate of the covariance/correlation matrix.
raw.centera numeric vector containing the initial robust estimate of the location vector.
References
Alqallaf, F. A. (2003). A new contamination model for robust estimation with large high-dimensional datasets. Ph.D. Thesis. http://hajek.stat.ubc.ca/~ruben/website/Fatemah_thesis.pdf
Maronna, R. A. and Zamar, R. H. (2002). Robust estimates of location and dispersion for high-dimensional datasets. Technometrics, 44, 307-317.
Details
This function is called by the high-level function covRob when either the pairwiseGK or the pairwiseQC estimator is specified (via the optional arguments estim = "pairwisegk" or estim = "pairwiseqc"). It may also be of interest to power users who want to compute a pairwise estimate with a minimum of fuss.
Presently the only control parameter is the name of the pairwise estimator, either "pairwisegk" or "pairwiseqc".